# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a030628 Showing 1-1 of 1 %I A030628 #47 Feb 21 2025 19:39:51 %S A030628 1,48,80,112,162,176,208,272,304,368,405,464,496,512,567,592,656,688, %T A030628 752,848,891,944,976,1053,1072,1136,1168,1250,1264,1328,1377,1424, %U A030628 1539,1552,1616,1648,1712,1744,1808,1863,1875,2032,2096,2192,2224,2349,2384 %N A030628 1 together with numbers of the form p*q^4 and p^9, where p and q are distinct primes. %C A030628 Also 1 together with numbers with 10 divisors. Also numbers n such that product of all proper divisors of n equals n^4. %C A030628 If M(n) denotes the product of all divisors of n, then n is said to be k-multiplicatively perfect if M(n)=n^k. All such numbers are of the form p*q^(k-1) or p^(2k-1). The sequence A030628 is therefore 5-multiplicatively perfect. See the Links for A007422. - _Walter Kehowski_, Sep 13 2005 %D A030628 D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston, MA, 1976. p. 119. %D A030628 David Wells, The Penguin Dictionary of Curious and Interesting Numbers, entry for 48, page 106, 1997. %H A030628 R. J. Mathar, Table of n, a(n) for n = 1..1000 %H A030628 Eric Weisstein's World of Mathematics, Divisor Product %H A030628 Index to sequences related to prime signature %F A030628 Union A178739 U A179665 {1}. - _R. J. Mathar_, Apr 03 2011 %p A030628 with(numtheory): k:=5: MPL:=[]: for z from 1 to 1 do for n from 1 to 5000 do if convert(divisors(n),`*`) = n^k then MPL:=[op(MPL),n] fi od; od; MPL; # _Walter Kehowski_, Sep 13 2005 %t A030628 Join[{1},Select[Range[6000],DivisorSigma[0,#]==10&]] (* _Vladimir Joseph Stephan Orlovsky_, May 05 2011 *) %t A030628 Select[Range[2500],Times@@Most[Divisors[#]]==#^4&] (* _Harvey P. Dale_, Nov 04 2024 *) %o A030628 (PARI) {v=[]; for(n=1,500,v=concat(v, if(numdiv(n)==10,n,",")); ); v} \\ _Jason Earls_, Jun 18 2001 %o A030628 (PARI) list(lim)=my(v=List([1]), t); forprime(p=2, (lim\2+.5)^(1/4), t=p^4; forprime(q=2, lim\t, if(p==q, next); listput(v, t*q))); forprime(p=2,(lim+.5)^(1/9),listput(v,p^9)); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Apr 26 2012 %o A030628 (Python) %o A030628 from sympy import primepi, primerange, integer_nthroot %o A030628 def A030628(n): %o A030628 def bisection(f,kmin=0,kmax=1): %o A030628 while f(kmax) > kmax: kmax <<= 1 %o A030628 kmin = kmax >> 1 %o A030628 while kmax-kmin > 1: %o A030628 kmid = kmax+kmin>>1 %o A030628 if f(kmid) <= kmid: %o A030628 kmax = kmid %o A030628 else: %o A030628 kmin = kmid %o A030628 return kmax %o A030628 def f(x): return n-1+x-sum(primepi(x//p**4) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,5)[0])-primepi(integer_nthroot(x,9)[0]) %o A030628 return bisection(f,n,n) # _Chai Wah Wu_, Feb 21 2025 %Y A030628 Cf. A030515, A030627, A030629. %K A030628 nonn,easy,nice,changed %O A030628 1,2 %A A030628 _Jeff Burch_ %E A030628 Better description from Sharon Sela (sharonsela(AT)hotmail.com), Dec 23 2001 %E A030628 More terms from _Walter Kehowski_, Sep 13 2005 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE