# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a003474 Showing 1-1 of 1 %I A003474 M3541 #34 Oct 21 2023 19:20:42 %S A003474 1,4,18,32,160,324,1456,2048,13122,25600,117128,209952,913952,2119936, %T A003474 9447840,13107200,86093440,172186884,774840976,1310720000,6964002864, %U A003474 13718968384,62761410632,88159684608,557885504000,835308258304,5083731656658,8988257288192,45753584909920,89261680665600,411782264189296,564050001920000 %N A003474 Generalized Euler phi function (for p=3). %C A003474 For n >= 2, a(n) is the number of n X n circulant invertible matrices over GF(3). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 22 2003 %D A003474 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003474 J. T. B. Beard Jr. and K. I. West, Factorization tables for x^n-1 over GF(q), Math. Comp., 28 (1974), 1167-1168. %t A003474 p = 3; numNormalp[n_] := Module[{r, i, pp}, pp = 1; Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1-1/p^r)^i, {d, Divisors[n]}]; Return[pp]]; numNormal[n_] := Module[{t, q, pp}, t=1; q=n; While[0==Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]]; a[n_] := If[n==1, 1, n*numNormal[n]]; Array[a, 40] (* _Jean-François Alcover_, Dec 10 2015, after _Joerg Arndt_ *) %o A003474 (PARI) %o A003474 p=3; /* global */ %o A003474 num_normal_p(n)= %o A003474 { %o A003474 my( r, i, pp ); %o A003474 pp = 1; %o A003474 fordiv (n, d, %o A003474 r = znorder(Mod(p,d)); %o A003474 i = eulerphi(d)/r; %o A003474 pp *= (1 - 1/p^r)^i; %o A003474 ); %o A003474 return( pp ); %o A003474 } %o A003474 num_normal(n)= %o A003474 { %o A003474 my( t, q, pp ); %o A003474 t = 1; q = n; %o A003474 while ( 0==(q%p), q/=p; t+=1; ); %o A003474 /* here: n==q*p^t */ %o A003474 pp = num_normal_p(q); %o A003474 pp *= p^n/n; %o A003474 return( pp ); %o A003474 } %o A003474 a(n)=if ( n==1, 1, n * num_normal(n) ); %o A003474 v=vector(66,n,a(n)) %o A003474 /* _Joerg Arndt_, Jul 03 2011 */ %Y A003474 Cf. A003473 (p=2), A192037 (p=5). %K A003474 nonn %O A003474 1,2 %A A003474 _N. J. A. Sloane_ %E A003474 Terms > 86093440 from _Joerg Arndt_, Jul 03 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE