# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a003453 Showing 1-1 of 1 %I A003453 M2542 #74 Jan 19 2021 11:48:00 %S A003453 1,3,6,11,17,26,36,50,65,85,106,133,161,196,232,276,321,375,430,495, %T A003453 561,638,716,806,897,1001,1106,1225,1345,1480,1616,1768,1921,2091, %U A003453 2262,2451,2641,2850,3060,3290,3521,3773,4026 %N A003453 Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation and reflection. %C A003453 In other words, the number of 2-dissections of an n-gon modulo the dihedral action. %C A003453 _John W. Layman_ observes that this appears to be the alternating sum transform (PSumSIGN) of A005744. %C A003453 Row 2 of the convolution array A213847. - _Clark Kimberling_, Jul 05 2012 %C A003453 Number of nonisomorphic outer planar graphs of order n >= 3 and size n+2. - _Christian Barrientos_ and _Sarah Minion_, Feb 27 2018 %D A003453 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003453 T. D. Noe, Table of n, a(n) for n=5..1000 %H A003453 Douglas Bowman and Alon Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv preprint arXiv:1209.6270 [math.CO], 2012. See Theorem 5(2). %H A003453 P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601. %H A003453 Petr Lisonek, Combinatorial families enumerated by quasi-polynomials, Journal of Combinatorial Theory, Series A, Volume 114, Issue 4, May 2007, Pages 619-630. %H A003453 Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388. %H A003453 N. J. A. Sloane, Transforms %H A003453 Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1). %F A003453 G.f.: (1+x-x^2) / ((1-x)^4*(1+x)^2). %F A003453 See also the Maple code. %F A003453 a(5)=1, a(6)=3, a(7)=6, a(8)=11, a(9)=17, a(10)=26, a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a (n-6). - _Harvey P. Dale_, Jan 28 2013 %F A003453 a(n) = (2*n^3-6*n^2-23*n+63+3*(n-5)*(-1)^n)/48, for n>=5. - _Luce ETIENNE_, Apr 07 2015 %F A003453 a(n) = (1/2) * Sum_{i=1..n-4} floor((i+1)*(n-i-2)/2). - _Wesley Ivan Hurt_, May 07 2016 %p A003453 T52:= proc(n) %p A003453 if n mod 2 = 0 then (n-4)*(n-2)*(n+3)/24; %p A003453 else (n-3)*(n^2-13)/24; fi end; %p A003453 [seq(T52(n),n=5..80)]; # _N. J. A. Sloane_, Dec 28 2012 %t A003453 nd[n_]:=If[EvenQ[n],(n-4)(n-2) (n+3)/24,(n-3) (n^2-13)/24]; Array[nd,50,5] (* or *) LinearRecurrence[{2,1,-4,1,2,-1},{1,3,6,11,17,26},50] (* _Harvey P. Dale_, Jan 28 2013 *) %o A003453 (PARI) \\ See A295419 for DissectionsModDihedral() %o A003453 { my(v=DissectionsModDihedral(apply(i->y + O(y^4), [1..40]))); apply(p->polcoeff(p, 3), v[5..#v]) } \\ _Andrew Howroyd_, Nov 24 2017 %Y A003453 Column 3 of A295634. %Y A003453 Cf. A005744, A213847, A295419. %K A003453 nonn,easy,nice %O A003453 5,2 %A A003453 _N. J. A. Sloane_, _Simon Plouffe_ %E A003453 Entry revised (following Bowman and Regev) by _N. J. A. Sloane_, Dec 28 2012 %E A003453 Name clarified by _Andrew Howroyd_, Nov 24 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE