# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a003449 Showing 1-1 of 1 %I A003449 M2687 #42 Nov 29 2023 06:58:41 %S A003449 1,1,3,7,24,74,259,891,3176,11326,40942,148646,543515,1996212,7367075, %T A003449 27294355,101501266,378701686,1417263770,5318762098,20011847548, %U A003449 75473144396,285267393358,1080432637662,4099856060808,15585106611244,59343290815356 %N A003449 Number of nonequivalent dissections of an n-gon into n-3 polygons by nonintersecting diagonals up to rotation and reflection. %C A003449 In other words, the number of almost-triangulations of an n-gon modulo the dihedral action. %C A003449 Equivalently, the number of edges of the (n-3)-dimensional associahedron modulo the dihedral action. %C A003449 The dissection will always be composed of one quadrilateral and n-4 triangles. - _Andrew Howroyd_, Nov 24 2017 %C A003449 See Theorem 30 of Bowman and Regev (although there appears to be a typo in the formula - see Maple code below). - _N. J. A. Sloane_, Dec 28 2012 %D A003449 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003449 Andrew Howroyd, Table of n, a(n) for n = 4..200 %H A003449 D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012. %H A003449 P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601. %H A003449 Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388. %p A003449 C:=n->binomial(2*n,n)/(n+1); %p A003449 T30:=proc(n) local t1; global C; %p A003449 if n mod 2 = 0 then %p A003449 t1:=(1/4-(3/(4*n)))*C(n-2) + (3/8)*C(n/2-1) + (1-3/n)*C(n/2-2); %p A003449 if n mod 4 = 0 then t1:=t1+C(n/4-1)/4 fi; %p A003449 else %p A003449 t1:=(1/4-(3/(4*n)))*C(n-2) + (1/2)*C((n-3)/2); %p A003449 fi; %p A003449 t1; end; %p A003449 [seq(T30(n),n=4..40)]; # _N. J. A. Sloane_, Dec 28 2012 %t A003449 c = CatalanNumber; %t A003449 T30[n_] := Module[{t1}, If[EvenQ[n], t1 = (1/4 - (3/(4*n)))*c[n - 2] + (3/8)*c[n/2 - 1] + (1 - 3/n)*c[n/2 - 2]; If[Mod[n, 4] == 0, t1 = t1 + c[n/4 - 1]/4], t1 = (1/4 - (3/(4*n)))*c[n-2] + (1/2)*c[(n-3)/2]]; t1]; %t A003449 Table[T30[n], {n, 4, 40}] (* _Jean-François Alcover_, Dec 14 2017, after _N. J. A. Sloane_ *) %o A003449 (PARI) \\ See A295419 for DissectionsModDihedral() %o A003449 { my(v=DissectionsModDihedral(apply(i->if(i>=3&&i<=4, y^(i-3) + O(y^2)), [1..25]))); apply(p->polcoeff(p, 1), v[4..#v]) } \\ _Andrew Howroyd_, Nov 24 2017 %Y A003449 A diagonal of A295634. %Y A003449 Cf. A003450, A295419. %K A003449 nonn %O A003449 4,3 %A A003449 _N. J. A. Sloane_ %E A003449 Entry revised (following Bowman and Regev) by _N. J. A. Sloane_, Dec 28 2012 %E A003449 Name clarified by _Andrew Howroyd_, Nov 24 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE