# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a003449
Showing 1-1 of 1
%I A003449 M2687 #42 Nov 29 2023 06:58:41
%S A003449 1,1,3,7,24,74,259,891,3176,11326,40942,148646,543515,1996212,7367075,
%T A003449 27294355,101501266,378701686,1417263770,5318762098,20011847548,
%U A003449 75473144396,285267393358,1080432637662,4099856060808,15585106611244,59343290815356
%N A003449 Number of nonequivalent dissections of an n-gon into n-3 polygons by nonintersecting diagonals up to rotation and reflection.
%C A003449 In other words, the number of almost-triangulations of an n-gon modulo the dihedral action.
%C A003449 Equivalently, the number of edges of the (n-3)-dimensional associahedron modulo the dihedral action.
%C A003449 The dissection will always be composed of one quadrilateral and n-4 triangles. - _Andrew Howroyd_, Nov 24 2017
%C A003449 See Theorem 30 of Bowman and Regev (although there appears to be a typo in the formula - see Maple code below). - _N. J. A. Sloane_, Dec 28 2012
%D A003449 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A003449 Andrew Howroyd, Table of n, a(n) for n = 4..200
%H A003449 D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012.
%H A003449 P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
%H A003449 Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
%p A003449 C:=n->binomial(2*n,n)/(n+1);
%p A003449 T30:=proc(n) local t1; global C;
%p A003449 if n mod 2 = 0 then
%p A003449 t1:=(1/4-(3/(4*n)))*C(n-2) + (3/8)*C(n/2-1) + (1-3/n)*C(n/2-2);
%p A003449 if n mod 4 = 0 then t1:=t1+C(n/4-1)/4 fi;
%p A003449 else
%p A003449 t1:=(1/4-(3/(4*n)))*C(n-2) + (1/2)*C((n-3)/2);
%p A003449 fi;
%p A003449 t1; end;
%p A003449 [seq(T30(n),n=4..40)]; # _N. J. A. Sloane_, Dec 28 2012
%t A003449 c = CatalanNumber;
%t A003449 T30[n_] := Module[{t1}, If[EvenQ[n], t1 = (1/4 - (3/(4*n)))*c[n - 2] + (3/8)*c[n/2 - 1] + (1 - 3/n)*c[n/2 - 2]; If[Mod[n, 4] == 0, t1 = t1 + c[n/4 - 1]/4], t1 = (1/4 - (3/(4*n)))*c[n-2] + (1/2)*c[(n-3)/2]]; t1];
%t A003449 Table[T30[n], {n, 4, 40}] (* _Jean-François Alcover_, Dec 14 2017, after _N. J. A. Sloane_ *)
%o A003449 (PARI) \\ See A295419 for DissectionsModDihedral()
%o A003449 { my(v=DissectionsModDihedral(apply(i->if(i>=3&&i<=4, y^(i-3) + O(y^2)), [1..25]))); apply(p->polcoeff(p, 1), v[4..#v]) } \\ _Andrew Howroyd_, Nov 24 2017
%Y A003449 A diagonal of A295634.
%Y A003449 Cf. A003450, A295419.
%K A003449 nonn
%O A003449 4,3
%A A003449 _N. J. A. Sloane_
%E A003449 Entry revised (following Bowman and Regev) by _N. J. A. Sloane_, Dec 28 2012
%E A003449 Name clarified by _Andrew Howroyd_, Nov 24 2017
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE