# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a002056 Showing 1-1 of 1 %I A002056 M4941 N2115 #70 Sep 08 2022 08:44:29 %S A002056 1,14,120,825,5005,28028,148512,755820,3730650,17978180,84987760, %T A002056 395482815,1816357725,8250123000,37119350400,165645101160, %U A002056 733919156190,3231337461300,14147884842000,61636377252450,267325773340626,1154761882042824,4969989654817600 %N A002056 Number of diagonal dissections of a convex n-gon into n-5 regions. %C A002056 Number of standard tableaux of shape (n-5,n-5,1,1,1) (see Stanley reference). - _Emeric Deutsch_, May 20 2004 %C A002056 Number of increasing tableaux of shape (n-2,n-2) with largest entry 2n-7. An increasing tableau is a semistandard tableau with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. - _Oliver Pechenik_, May 02 2014 %C A002056 Number of noncrossing partitions of 2n-7 into n-5 blocks all of size at least 2. - _Oliver Pechenik_, May 02 2014 %D A002056 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A002056 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002056 T. D. Noe, Table of n, a(n) for n=6..100 %H A002056 D. Beckwith, Legendre polynomials and polygon dissections?, Amer. Math. Monthly, 105 (1998), 256-257. %H A002056 A. Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff. %H A002056 P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601. %H A002056 O. Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, arXiv:1209.1355 [math.CO], 2012-2014. %H A002056 O. Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, J. Combin. Theory A, 125 (2014), 357-378. %H A002056 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A002056 Simon Plouffe, Une méthode pour obtenir la fonction génératrice d'une série, FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics; arXiv:0912.0072 [math.NT], 2009. %H A002056 R. C. Read, On general dissections of a polygon, Preprint (1974). %H A002056 Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388, Table 1. %H A002056 R. P. Stanley, Polygon dissections and standard Young tableaux, J. Comb. Theory, Ser. A, 76, 175-177, 1996. %F A002056 a(n) = binomial(n-3, 3)*binomial(2n-7, n-6)/(n-5). %F A002056 G.f.: (x-1+(1-11*x+40*x^2-50*x^3+10*x^4)*(1-4*x)^(-5/2))/(2*x^5). - _Mark van Hoeij_, Oct 25 2011 %F A002056 a(n) ~ 4^n*n^(3/2)/(768*sqrt(Pi)). - _Ilya Gutkovskiy_, Apr 11 2017 %F A002056 D-finite with recurrence: -(n-1)*(n-5)*(n-6)*a(n) +2*(2*n-7)*(n-3)*(n-4)*a(n-1)=0. - _R. J. Mathar_, Feb 16 2020 %p A002056 A002056:=n->binomial(n-3,3)*binomial(2*n-7,n-6)/(n-5): seq(A002056(n), n=6..40); # _Wesley Ivan Hurt_, Apr 12 2017 %t A002056 Table[Binomial[n - 3, 3] Binomial[2n - 7, n - 6]/(n - 5), {n, 6, 50}] (* _Indranil Ghosh_, Apr 11 2017 *) %o A002056 (Magma) [Binomial(n-3, 3)*Binomial(2*n-7, n-6)/(n-5): n in [6..30]]; // _Vincenzo Librandi_, Feb 18 2020 %K A002056 nonn %O A002056 6,2 %A A002056 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE