# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a008963 Showing 1-1 of 1 %I A008963 #36 Nov 22 2023 11:30:36 %S A008963 0,1,1,2,3,5,8,1,2,3,5,8,1,2,3,6,9,1,2,4,6,1,1,2,4,7,1,1,3,5,8,1,2,3, %T A008963 5,9,1,2,3,6,1,1,2,4,7,1,1,2,4,7,1,2,3,5,8,1,2,3,5,9,1,2,4,6,1,1,2,4, %U A008963 7,1,1,3,4,8,1,2,3,5,8,1,2,3,6,9,1,2,4,6,1,1,2,4,7,1,1,3,5,8,1 %N A008963 Initial digit of Fibonacci number F(n). %C A008963 Benford's law applies since the Fibonacci sequence is of exponential growth: P(d)=log_10(1+1/d), in fact among first 5000 values the digit d=1 appears 1505 times, while 5000*P(1) is about 1505.15. - _Carmine Suriano_, Feb 14 2011 %C A008963 Wlodarski observed and Webb proved that the distribution of terms of this sequence follows Benford's law. - _Amiram Eldar_, Sep 23 2019 %H A008963 Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe) %H A008963 William Webb, Distribution of the first digits of Fibonacci numbers, The Fibonacci Quarterly, Vol. 13, No. 4 (1975), pp. 334-336. %H A008963 Wikipedia, Benford's law. %H A008963 J. Wlodarski, Fibonacci and Lucas Numbers Tend to Obey Benford's Law, The Fibonacci Quarterly, Vol. 9, No. 1 (1971), pp. 87-88. %H A008963 Index entries for sequences related to Benford's law. %F A008963 a(n) = A000030(A000045(n)). - _Amiram Eldar_, Sep 23 2019 %F A008963 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{d=1..9} d*log(1+1/d)/log(10) = 3.440236... (A213201). - _Amiram Eldar_, Jan 12 2023 %p A008963 F:= combinat[fibonacci]: %p A008963 a:= n-> parse(""||(F(n))[1]): %p A008963 seq(a(n), n=0..100); # _Alois P. Heinz_, Nov 22 2023 %t A008963 Table[IntegerDigits[Fibonacci[n]][[1]], {n, 0, 100}] (* _T. D. Noe_, Sep 23 2011 *) %o A008963 (PARI) vector(10001,n,f=fibonacci(n-1);f\10^(#Str(f)-1)) %o A008963 (Haskell) %o A008963 a008963 = a000030 . a000045 -- _Reinhard Zumkeller_, Sep 09 2015 %Y A008963 Cf. A000045, A003893 (final digit). %Y A008963 Cf. A000030, A261607, A213201. %K A008963 nonn,base,easy %O A008963 0,4 %A A008963 _N. J. A. Sloane_. # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE