# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a008836
Showing 1-1 of 1
%I A008836 #133 Jun 22 2024 16:17:23
%S A008836 1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,1,1,-1,
%T A008836 -1,-1,-1,-1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,-1,1,-1,-1,
%U A008836 1,1,1,1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,1,-1,1,1,1,1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1
%N A008836 Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).
%C A008836 Coons and Borwein: "We give a new proof of Fatou's theorem: if an algebraic function has a power series expansion with bounded integer coefficients, then it must be a rational function. This result is applied to show that for any non-trivial completely multiplicative function from N to {-1,1}, the series sum_{n=1..infinity} f(n)z^n is transcendental over {Z}[z]; in particular, sum_{n=1..infinity} lambda(n)z^n is transcendental, where lambda is Liouville's function. The transcendence of sum_{n=1..infinity} mu(n)z^n is also proved." - _Jonathan Vos Post_, Jun 11 2008
%C A008836 Coons proves that a(n) is not k-automatic for any k > 2. - _Jonathan Vos Post_, Oct 22 2008
%C A008836 The Riemann hypothesis is equivalent to the statement that for every fixed epsilon > 0, lim_{n -> infinity} (a(1) + a(2) + ... + a(n))/n^(1/2 + epsilon) = 0 (Borwein et al., theorem 1.2). - _Arkadiusz Wesolowski_, Oct 08 2013
%D A008836 T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 37.
%D A008836 P. Borwein, S. Choi, B. Rooney and A. Weirathmueller, The Riemann Hypothesis: A Resource for the Aficionado and Virtuoso Alike, Springer, Berlin, 2008, pp. 1-11.
%D A008836 H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
%D A008836 H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.
%D A008836 P. Ribenboim, Algebraic Numbers, p. 44.
%D A008836 J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 279.
%D A008836 J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 112.
%H A008836 T. D. Noe, Table of n, a(n) for n = 1..10000
%H A008836 P. Borwein, R. Ferguson, and M. J. Mossinghoff, Sign changes in sums of the Liouville function, Math. Comp. 77 (2008), 1681-1694.
%H A008836 Benoit Cloitre, A tauberian approach to RH, arXiv:1107.0812 [math.NT], 2011.
%H A008836 Michael Coons and Peter Borwein, Transcendence of Power Series for Some Number Theoretic Functions, arXiv:0806.1563 [math.NT], 2008.
%H A008836 Michael Coons, (Non)Automaticity of number theoretic functions, arXiv:0810.3709 [math.NT], 2008.
%H A008836 H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409. [Annotated scanned copy]
%H A008836 R. S. Lehman, On Liouville's function, Math. Comp., 14 (1960), 311-320.
%H A008836 Andrei Vieru, Euler constant as a renormalized value of Riemann zeta function at its pole. Rationals related to Dirichlet L-functions, arXiv:1306.0496 [math.GM], 2015.
%H A008836 H. Walum, A recurrent pattern in the list of quadratic residues mod a prime and in the values of the Liouville lambda function, J. Numb. Theory 12 (1) (1980) 53-56.
%H A008836 Eric Weisstein's World of Mathematics, Liouville Function
%H A008836 Wikipedia, Liouville function
%H A008836 Index to divisibility sequences
%H A008836 Index entries for sequences computed from exponents in factorization of n
%F A008836 Dirichlet g.f.: zeta(2s)/zeta(s); Dirichlet inverse of A008966.
%F A008836 Sum_{ d divides n } lambda(d) = 1 if n is a square, otherwise 0.
%F A008836 Completely multiplicative with a(p) = -1, p prime.
%F A008836 a(n) = (-1)^A001222(n) = (-1)^bigomega(n). - _Jonathan Vos Post_, Apr 16 2006
%F A008836 a(n) = A033999(A001222(n)). - _Jaroslav Krizek_, Sep 28 2009
%F A008836 Sum_{d|n} a(d) *(A000005(d))^2 = a(n) *Sum{d|n} A000005(d). - _Vladimir Shevelev_, May 22 2010
%F A008836 a(n) = 1 - 2*A066829(n). - _Reinhard Zumkeller_, Nov 19 2011
%F A008836 a(n) = i^(tau(n^2)-1) where tau(n) is A000005 and i is the imaginary unit. - _Anthony Browne_, May 11 2016
%F A008836 a(n) = A106400(A156552(n)). - _Antti Karttunen_, May 30 2017
%F A008836 Recurrence: a(1)=1, n > 1: a(n) = sign(1/2 - Sum_{d (-1)^numtheory[bigomega](n); # _Peter Luschny_, Sep 15 2011
%p A008836 with(numtheory): A008836 := proc(n) local i,it,s; it := ifactors(n): s := (-1)^add(it[2][i][2], i=1..nops(it[2])): RETURN(s) end:
%t A008836 Table[LiouvilleLambda[n], {n, 100}] (* _Enrique Pérez Herrero_, Dec 28 2009 *)
%t A008836 Table[If[OddQ[PrimeOmega[n]],-1,1],{n,110}] (* _Harvey P. Dale_, Sep 10 2014 *)
%o A008836 (PARI) {a(n) = if( n<1, 0, n=factor(n); (-1)^sum(i=1, matsize(n)[1], n[i,2]))}; /* _Michael Somos_, Jan 01 2006 */
%o A008836 (PARI) a(n)=(-1)^bigomega(n) \\ _Charles R Greathouse IV_, Jan 09 2013
%o A008836 (Haskell)
%o A008836 a008836 = (1 -) . (* 2) . a066829 -- _Reinhard Zumkeller_, Nov 19 2011
%o A008836 (Python)
%o A008836 from sympy import factorint
%o A008836 def A008836(n): return -1 if sum(factorint(n).values()) % 2 else 1 # _Chai Wah Wu_, May 24 2022
%Y A008836 Cf. A000005, A001222, A002053, A007421, A002819 (partial sums), A008683, A010052, A026424, A028260, A028488, A056912, A056913, A065043, A066829, A106400, A156552, A349905, A063647, A101455, A048691.
%Y A008836 Möbius transform of A010052.
%Y A008836 Cf. A182448 (Dgf at s=2), A347328 (Dgf at s=3), A347329 (Dgf at s=4).
%K A008836 sign,easy,nice,mult
%O A008836 1,1
%A A008836 _N. J. A. Sloane_
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE