# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a006049 Showing 1-1 of 1 %I A006049 #48 Sep 17 2024 04:04:03 %S A006049 2,3,4,7,8,14,16,20,21,31,33,34,35,38,39,44,45,50,51,54,55,56,57,62, %T A006049 68,74,75,76,85,86,87,91,92,93,94,95,98,99,111,115,116,117,118,122, %U A006049 123,127,133,134,135,141,142,143,144,145,146,147,152,158,159,160,161,171,175 %N A006049 Numbers k such that k and k+1 have the same number of distinct prime divisors. %C A006049 Sequence is infinite, as proved by Schlage-Puchta, who comments: "Buttkewitz found a non-computational proof, and the Goldston-Pintz-Yildirim-sieve yields more precise information". - _Charles R Greathouse IV_, Jan 09 2013 %C A006049 The asymptotic density of this sequence is 0 (Erdős, 1936). - _Amiram Eldar_, Sep 17 2024 %D A006049 Calvin C. Clawson, Mathematical mysteries, Plenum Press, 1996, p. 250. %H A006049 Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2500 from T. D. Noe) %H A006049 Paul Erdős, On a problem of Chowla and some related problems, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 32, No. 4 (1936), pp. 530-540; alternative link. %H A006049 Jan-Christoph Schlage-Puchta, The equation ω(n)=ω(n+1), Mathematika, Vol. 50, No. 1-2 (2003), pp. 99-101; arXiv preprint, arXiv:1105.1621 [math.NT], 2011. %F A006049 A001221(a(n)) = A001221(a(n)+1). - _Reinhard Zumkeller_, Jan 22 2013 %t A006049 f[n_] := Length@FactorInteger[n];t = f /@ Range[175];Flatten@Position[Rest[t] - Most[t], 0] (* _Ray Chandler_, Mar 27 2007 *) %t A006049 Select[Range[200],PrimeNu[#]==PrimeNu[#+1]&] (* _Harvey P. Dale_, May 09 2012 *) %t A006049 Flatten[Position[Partition[PrimeNu[Range[200]],2,1],_?(#[[1]]==#[[2]]&),{1},Heads->False]] (* _Harvey P. Dale_, May 22 2015 *) %t A006049 SequencePosition[PrimeNu[Range[200]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jun 02 2019 *) %o A006049 (PARI) is(n)=omega(n)==omega(n+1) \\ _Charles R Greathouse IV_, Jan 09 2013 %o A006049 (Haskell) %o A006049 import Data.List (elemIndices) %o A006049 a006049 n = a006049_list !! (n-1) %o A006049 a006049_list = map (+ 1) $ elemIndices 0 $ %o A006049 zipWith (-) (tail a001221_list) a001221_list %o A006049 -- _Reinhard Zumkeller_, Jan 22 2013 %Y A006049 Cf. A001221, A052215, A107800, A006073, A294277, A294278. %Y A006049 Subsequence of A062974. %K A006049 nonn,easy,nice %O A006049 1,1 %A A006049 _N. J. A. Sloane_ %E A006049 Extended by _Ray Chandler_, Mar 27 2007 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE