[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a354131 -id:a354131
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(k,n) (k >= 0, n = 0, ..., k) = number of tilings of a k X n rectangle using 2 X 2, and 1 X 1 tiles, right trominoes and dominoes.
+10
2
1, 1, 1, 1, 2, 12, 1, 3, 48, 405, 1, 5, 216, 4185, 103300, 1, 8, 936, 40320, 2352830, 124098498, 1, 13, 4104, 397755, 55004286, 6763987198, 863829618636, 1, 21, 17928, 3892293, 1274945897, 364713815832, 108969107997657, 32100965172272499
OFFSET
0,5
COMMENTS
Tiling algorithm, see A351322.
Reading the sequence {T(k,n)} for n>k, use T(n,k) instead of T(k,n).
T(1,n) = A000045(n+1), Fibonacci numbers.
T(2,n) = A354131(n), T(3,n) = A354132(n).
EXAMPLE
Triangle begins
k\n_0__1____2______3________4__________5____________6
0: 1
1: 1 1
2: 1 2 12
3: 1 3 48 405
4: 1 5 216 4185 103300
5: 1 8 936 40320 2352830 124098498
6: 1 13 4104 397755 55004286 6763987198 863829618636
PROG
(Maxima), see A352589.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gerhard Kirchner, May 18 2022
STATUS
approved
Number of tilings of a 3 X n rectangle using 2 X 2 and 1 X 1 tiles, right trominoes and dominoes.
+10
2
1, 3, 48, 405, 4185, 40320, 397755, 3892293, 38193444, 374425263, 3671810235, 36003770640, 353046480345, 3461866214283, 33946152068808, 332866572321933, 3263999126947497, 32005882711563552, 313840950402409011, 3077438640586986141, 30176522977460549436
OFFSET
0,2
COMMENTS
Tiling algorithm see A351322.
FORMULA
G.f.: (1 - 3*x - 8*x^2 + 3*x^3 - x^4) / (1 - 6*x - 38*x^2 + 68*x^4 - 24*x^5 + 3*x^6).
a(n) = 6*a(n-1) + 38*a(n-2) - 68*a(n-4) + 24*a(n-5) - 3*a(n-6).
EXAMPLE
a(2) = 48, see 2 X 3, A354131.
PROG
(Maxima), see A352589.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gerhard Kirchner, May 18 2022
STATUS
approved

Search completed in 0.004 seconds