[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a327574 -id:a327574
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numerator of the mean infinitary abundancy index of the infinitary divisors of n.
+10
5
1, 5, 7, 9, 11, 35, 15, 45, 19, 11, 23, 21, 27, 75, 77, 33, 35, 95, 39, 99, 5, 115, 47, 105, 51, 135, 133, 135, 59, 77, 63, 165, 161, 175, 33, 19, 75, 195, 63, 99, 83, 25, 87, 207, 209, 235, 95, 77, 99, 51, 245, 243, 107, 665, 23, 675, 91, 295, 119, 231, 123, 315
OFFSET
1,2
COMMENTS
The infinitary abundancy index of a number k is A049417(k)/k.
The record values of a(n)/A374787(n) are attained at the terms of A037992.
The least number k such that a(k)/A374787(k) is larger than 2, 3, 4, ..., is A037992(6) = 7560, A037992(33) = 1370819010042780920891599455129161859473627856000, ... .
LINKS
FORMULA
Let f(n) = a(n)/A374787(n). Then:
f(n) = (Sum_{d infinitary divisor of n} isigma(d)/d) / id(n), where isigma(n) is the sum of infinitary divisors of n (A049417), and id(n) is their number (A037445).
f(n) is multiplicative with f(p^e) = Product{k>=1, e_k=1} (1 + 1/(2*p^(2^(k+1)))), where e = Sum_{k} e_k * 2^k is the binary representation of e, i.e., e_k is bit k of e.
f(n) = (Sum_{d infinitary divisor of n} d*id(d)) / (n*id(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = Product_{P} (1 + 1/(2*P*(P+1))) = 1.21407233718434377029..., where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376). For comparison, the asymptotic mean of the infinitary abundancy index over all the positive integers is 1.461436... = 2 * A327574.
Lim sup_{n->oo} f(n) = oo (i.e., f(n) is unbounded).
f(n) <= A374777(n)/A374778(n) with equality if and only if n is squarefree (A005117).
f(n) >= A374783(n)/A374784(n) with equality if and only if n is in A138302.
EXAMPLE
For n = 4, 4 has 2 infinitary divisors, 1 and 4. Their infinitary abundancy indices are isigma(1)/1 = 1 and isigma(4)/4 = 5/4, and their mean infinitary abundancy index is (1 + 5/4)/2 = 9/8. Therefore a(4) = numerator(9/8) = 9.
MATHEMATICA
f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], _?(# == 1 &)])); a[1] = 1; a[n_] := Numerator[Times @@ (1 + 1/(2*Flatten@ (f @@@ FactorInteger[n])))]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n), b); numerator(prod(i = 1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1 + 1/(2*f[i, 1]^(2^(#b-k))), 1)))); }
CROSSREFS
Similar sequences: A374777/A374778, A374783/A374784.
KEYWORD
nonn,easy,frac
AUTHOR
Amiram Eldar, Jul 20 2024
STATUS
approved
Partial sums of the infinitary divisors sum function: a(n) = Sum_{k=1..n} isigma(k), where isigma is A049417.
+10
3
1, 4, 8, 13, 19, 31, 39, 54, 64, 82, 94, 114, 128, 152, 176, 193, 211, 241, 261, 291, 323, 359, 383, 443, 469, 511, 551, 591, 621, 693, 725, 776, 824, 878, 926, 976, 1014, 1074, 1130, 1220, 1262, 1358, 1402, 1462, 1522, 1594, 1642, 1710, 1760, 1838, 1910, 1980
OFFSET
1,2
COMMENTS
Differs from A307159 at n >= 16.
REFERENCES
Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.
LINKS
Graeme L. Cohen and Peter Hagis, Jr., Arithmetic functions associated with infinitary divisors of an integer, International Journal of Mathematics and Mathematical Sciences, Vol. 16, No. 2 (1993), pp. 373-383.
FORMULA
a(n) ~ c * n^2, where c = 0.730718... (A327574).
MATHEMATICA
f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], _?(# == 1 &)])); isigma[1] = 1; isigma[n_] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); Accumulate[Array[isigma, 52]]
CROSSREFS
Cf. A049417 (isigma), A327574.
Cf. A024916 (all divisors), A064609 (unitary), A307042 (exponential), A307159 (bi-unitary).
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 17 2019
STATUS
approved

Search completed in 0.004 seconds