[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a302994 -id:a302994
     Sort: relevance | references | number | modified | created      Format: long | short | data
The number of exponential abundant numbers below 10^n.
+10
5
0, 0, 1, 12, 102, 1045, 10449, 104365, 1043641, 10436775, 104367354
OFFSET
1,4
FORMULA
Limit_{n->oo} a(n)/10^n = 0.001043673... is the density of exponential abundant numbers (see A129575). [Updated by Amiram Eldar, Sep 02 2022]
EXAMPLE
Below 10^3 there is only one exponential abundant number, A129575(1) = 900, thus a(3) = 1.
MATHEMATICA
fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ esigma[k]>2k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Apr 30 2019
EXTENSIONS
a(11) from Amiram Eldar, Sep 02 2022
STATUS
approved
The number of nonunitary abundant numbers below 10^n.
+10
5
0, 5, 75, 812, 8079, 81052, 808477, 8097357, 80939927, 809350234
OFFSET
1,2
FORMULA
Conjecture: Lim_{n->oo} a(n)/10^n = 0.0809... is the density of nonunitary abundant numbers.
EXAMPLE
Below 10^2 there are 5 nonunitary abundant numbers, 36, 48, 72, 80, and 96, thus a(2) = 5.
MATHEMATICA
usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ nusigma[k]>k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Apr 30 2019
STATUS
approved
The number of infinitary abundant numbers below 10^n.
+10
4
0, 12, 114, 1270, 12518, 125634, 1257749, 12570993, 125716733, 1256921422, 12570417639
OFFSET
1,2
FORMULA
Conjecture: Lim_{n->oo} a(n)/10^n = 0.125... is the density of infinitary abundant numbers.
EXAMPLE
Below 10^2 there are 12 infinitary abundant numbers, 24, 30, 40, 42, 54, 56, 66, 70, 72, 78, 88, and 96, thus a(2) = 12.
MATHEMATICA
fun[p_, e_] := Module[{ b = IntegerDigits[e, 2]}, m=Length[b]; Product[If[b[[j]] > 0, 1+p^(2^(m-j)), 1], {j, 1, m}]]; isigma[1]=1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ isigma[k]>2k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Apr 30 2019
EXTENSIONS
a(11) from Amiram Eldar, Sep 09 2022
STATUS
approved
The number of odd abundant numbers below 10^n.
+10
3
0, 0, 1, 23, 210, 1996, 20661, 205366, 2048662, 20502004, 204951472
OFFSET
1,4
COMMENTS
Anderson proved that the density of odd deficient numbers is at least (48 - 3*Pi^2)/(32 - Pi^2) ~ 0.831...
Kobayashi et al. proved that the density of odd abundant numbers is between 0.002042 and 0.002071.
LINKS
C. W. Anderson, Density of Deficient Odd Numbers, The American Mathematical Monthly, Vol. 82, No. 10 (1975), pp. 1018-1020.
Mitsuo Kobayashi, Paul Pollack and Carl Pomerance, On the distribution of sociable numbers, Journal of Number Theory, Vol. 129, No. 8 (2009), pp. 1990-2009. See Theorem 10 on p. 2007.
FORMULA
Lim_{n->oo} a(n)/10^n = 0.0020... is the density of odd abundant numbers.
EXAMPLE
945 is the only odd abundant number below 10^3, thus a(3) = 1.
MATHEMATICA
abQ[n_] := DivisorSigma[1, n] > 2 n; c = 0; k = 1; s = {}; Do[While[k < 10^n, If[abQ[k], c++]; k += 2]; AppendTo[s, c], {n, 1, 5}]; s
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Aug 28 2019
STATUS
approved
The number of coreful abundant numbers (A308053) below 10^n.
+10
0
0, 1, 24, 259, 2614, 26222, 262220, 2622178, 26221610, 262215860, 2622158194
OFFSET
1,3
FORMULA
a(n) ~ c * 10^n, where c = 0.0262215... is the asymptotic density of the coreful abundant numbers (see A308053). [Updated by Amiram Eldar, Sep 02 2022]
EXAMPLE
Below 10^2 there is only one coreful abundant number, 72, hence a(2) = 1.
MATHEMATICA
f[p_, e_] := (p^(e+1)-1)/(p-1)-1; csigma[1]=1; csigma[n_] := Times @@ (f @@@ FactorInteger[n]); cpQ[n_] := csigma[n] > 2*n; s={0}; c=0; p=100; Do[If[k==p, AppendTo[s, c]; p*=10]; If[cpQ[k], c++], {k, 1, 1000001}]; s
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, May 10 2019
EXTENSIONS
a(11) from Amiram Eldar, Sep 02 2022
STATUS
approved

Search completed in 0.006 seconds