[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a305633 -id:a305633
     Sort: relevance | references | number | modified | created      Format: long | short | data
1 and odd numbers that are not perfect powers.
+10
5
1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 123, 127, 129, 131, 133, 135, 137
OFFSET
1,2
MATHEMATICA
radQ[n_]:=Or[n==1, GCD@@FactorInteger[n][[All, 2]]==1];
Select[Range[200], OddQ[#]&&radQ[#]&]
PROG
(PARI) isok(n) = (n==1) || ((n % 2) && !ispower(n)); \\ Michel Marcus, Jun 08 2018
(Magma) [1] cat [n : n in [3..200 by 2] | not IsPower(n) ]; // Vincenzo Librandi, Jul 06 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 07 2018
STATUS
approved
Even numbers that are not perfect powers.
+10
2
2, 6, 10, 12, 14, 18, 20, 22, 24, 26, 28, 30, 34, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 130, 132, 134, 136, 138
OFFSET
1,1
COMMENTS
Perfect powers are of the form m^k where m > 0 and k > 1 (A001597).
LINKS
FORMULA
A005843 \ A001597. - Eric Chen, Jun 14 2018
EXAMPLE
10 is in the sequence since it is even and is not a power of an integer. 17 is not in the sequence since it is odd, and 36 is not in the sequence since it is a power of an integer (36 = 6^2).
MAPLE
N:= 1000:
S:={seq(i, i=2..N, 2)} minus {seq(seq(e^m, m=2..floor(log[e](N))), e=2..floor(sqrt(N)), 2)}:
sort(convert(S, list)); # Robert Israel, Jan 24 2019
MATHEMATICA
radQ[n_]:=Or[n==1, GCD@@FactorInteger[n][[All, 2]]==1];
Select[Range[200], EvenQ[#]&&radQ[#]&]
PROG
(PARI) isok(n) = !(n % 2) && !ispower(n); \\ Michel Marcus, Jun 08 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 07 2018
STATUS
approved

Search completed in 0.006 seconds