Displaying 1-7 of 7 results found.
page
1
Start with Y(0)=0, X(1)=1, Y(1)=2. For n > 1, choose least positive integers Y(n) > X(n) such that neither Y(n) nor X(n) appear in {Y(k), 1 <= k < n} or {X(k), 1 <= k < n} and such that Y(n)-X(n) does not appear in {Y(k)-X(k), 1 <= k < n} or {Y(k)+X(k), 1 <= k < n}; sequence gives Y(n) (for X(n) see A140100).
+10
32
0, 2, 5, 8, 11, 13, 16, 19, 22, 25, 28, 31, 33, 36, 39, 42, 45, 48, 50, 53, 56, 59, 62, 65, 68, 70, 73, 76, 79, 81, 84, 87, 90, 93, 96, 99, 101, 104, 107, 110, 113, 116, 118, 121, 124, 127, 130, 133, 136, 138, 141, 144, 147, 150, 153, 156, 158, 161, 164, 167, 170, 173
Start with Y(0)=0, X(1)=1, Y(1)=2. For n > 1, choose least positive integers Y(n) > X(n) such that neither Y(n) nor X(n) appear in {Y(k), 1 <= k < n} or {X(k), 1 <= k < n} and such that Y(n) - X(n) does not appear in {Y(k) - X(k), 1 <= k < n} or {Y(k) + X(k), 1 <= k < n}; sequence gives X(n) (for Y(n) see A140101).
+10
25
1, 3, 4, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106
FORMULA
It is conjectured in A305392 that the first differences of (X(n)) as a word are given by 212121 delta(x), where x is the tribonacci word x = A092782, and delta is the morphism
0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 84, 85, 87, 88, 89, 90, 92, 93
3, 8, 12, 17, 20, 25, 29, 34, 39, 43, 48, 51, 56, 60, 65, 69, 74, 77, 82, 86, 91, 96, 100, 105, 108, 113, 117, 122, 125, 130, 134, 139, 144, 148, 153, 156, 161, 165, 170, 174, 179, 182, 187, 191, 196, 201, 205, 210, 213, 218, 222, 227, 232, 236, 241, 244, 249
2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3
1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1
5, 4, 5, 3, 5, 4, 5, 5, 4, 5, 3, 5, 4, 5, 4, 5, 3, 5, 4, 5, 5, 4, 5, 3, 5, 4, 5, 3, 5, 4, 5, 5, 4, 5, 3, 5, 4, 5, 4, 5, 3, 5, 4, 5, 5, 4, 5, 3, 5, 4, 5, 5, 4, 5, 3, 5, 4, 5, 4, 5, 3, 5, 4, 5, 5, 4, 5, 3, 5, 4, 5, 3, 5, 4, 5, 5, 4, 5, 3, 5, 4, 5, 4, 5, 3, 5, 4, 5, 5, 4, 5, 3, 5, 4, 5, 4
Search completed in 0.010 seconds
|