[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a262023 -id:a262023
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numerator of partial sums of a reordered alternating harmonic series.
+10
3
1, 4, 5, 31, 247, 389, 1307, 15637, 13327, 187111, 199123, 353201, 6364777, 127056883, 23083451, 24191987, 579694957, 535076383, 13912332463, 43224283189, 40355946289, 1210479158981, 38689398709811, 72866186391697, 75054119011297, 77117026909777, 73105817107177, 2777117009412349
OFFSET
0,2
COMMENTS
For the denominators see A262022.
The reordered alternating harmonic series considered here is 1 + 1/3 - 1/2 + 1/5 + 1/7 - 1/4 + 1/9 + 1/11 - 1/6 + ... + ... - ...
The limit n -> infinity of the partial sums s(n) = a(n)/A262031(n) is 3*log(2)/2, approximately 1.03972077083991... For the decimal expansion see A262023.
Combining three consecutive terms of this series leads to the series b(0) + b(1) + ..., with b(k) = (1/2)*(8*k+5)/((4*k+1)*(4*k+3)*(k+1)). This produces partial sums 5/6, 13/140, 7/198, 29/1560, 37/3230, ..., which are given by s(3*n+2), n = 0, 1, .... Therefore, the limit is the same as the one given above, and it is obtained from Sum_{k=0..n} b(k) = (1/4)*Psi(n+5/4) + (1/4)*Psi(n+7/4) - (1/2)*Psi(n+2) + (3/2)*log(2), with the digamma function Psi(x).
This reordered alternating harmonic series appears as an example in the famous Dirichlet article, p. 319 (Werke I). Martin Ohm showed that for the reordering with alternating m consecutive positive terms followed by n negative terms (here n = 2 and m = 1) the sum becomes log(2) + (1/2)*log(m/n). See the reference, paragraph 8. p. 12-14. See also the Pringsheim reference.
FORMULA
a(n) = numerator(s(n)) with s(n) = Sum_{k=0..n} c(k), where c(k) = 3/(4*k+3), 3/(4*k+5), -3/(2*(k+1)) if k == 0, 1, 2 (mod 3), respectively.
EXAMPLE
The first fractions s(n) (in lowest terms) are 1, 4/3, 5/6, 31/30, 247/210, 389/420, 1307/1260, 15637/13860, 13327/13860, 187111/180180, 199123/180180, 353201/360360, ...
The values s(10^n), for n=0..6, are (Maple 10 digits) [1.333333333, 1.105133755, 1.047114258, 1.040469694, 1.039795760, 1.039728271, 1.039721521], to be compared with 3*log(2)/2 (approximately 1.039720771).
MATHEMATICA
Table[Numerator@ Sum[Which[Mod[k, 3] == 0, 3/(4 k + 3), Mod[k, 3] == 1, 3/(4 k + 5), True, -3/(2 (k + 1))], {k, 0, n} ], {n, 0, 27}] (* Michael De Vlieger, Jul 26 2016 *)
PROG
(PARI) lista(nn) = {my(s = 0); for (k=0, nn, if (k%3==2, t = -3/(2*(k+1)), if (k%3==1, t = 3/(4*k+5), t = 3/(4*k+3))); s += t; print1(numerator(s), ", "); ); } \\ Michel Marcus, Sep 13 2015
CROSSREFS
Cf. A262022 (denominator), A262023, A058313, A058312, A002162.
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Sep 08 2015
STATUS
approved
Denominator of partial sums of a reordered alternating harmonic series.
+10
2
1, 3, 6, 30, 210, 420, 1260, 13860, 13860, 180180, 180180, 360360, 6126120, 116396280, 23279256, 23279256, 535422888, 535422888, 13385572200, 40156716600, 40156716600, 1164544781400, 36100888223400, 72201776446800, 72201776446800
OFFSET
0,2
COMMENTS
See A262031 for this reordered alternating harmonic series with partial sums s(n).
FORMULA
a(n) = denominator(s(n)) with s(n) = Sum_{k=0..n} c(k), where c(k) = 3/(4*k+3), 3/(4*k+5), -3/(2*(k+1)) if k == 0, 1, 2 (mod 3), respectively.
EXAMPLE
See A262031 for s(n), n=0..11, and s(10^n) for n=0..6.
PROG
(PARI) lista(nn) = {my(s = 0); for (k=0, nn, if (k%3==2, t = -3/(2*(k+1)), if (k%3==1, t = 3/(4*k+5), t = 3/(4*k+3))); s += t; print1(denominator(s), ", "); ); } \\ Michel Marcus, Sep 13 2015
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Sep 08 2015
STATUS
approved
Decimal expansion of -Pi/4 + (3*log(2))/2.
+10
1
2, 5, 4, 3, 2, 2, 6, 0, 7, 4, 4, 2, 4, 6, 9, 6, 5, 4, 5, 1, 0, 1, 8, 7, 3, 3, 6, 3, 6, 7, 3, 8, 9, 1, 3, 1, 0, 6, 3, 9, 5, 7, 8, 5, 1, 6, 9, 6, 6, 0, 6, 4, 2, 5, 9, 3, 7, 2, 8, 3, 8, 6, 6, 1, 6, 3, 1, 3, 6, 3, 3, 1, 3, 8, 2, 9, 8, 9, 8, 2, 3, 7, 5, 1, 7, 8, 6, 2, 8, 4, 1, 5, 9, 0, 9, 8, 7, 6, 4, 3, 1, 7
OFFSET
0,1
LINKS
Jean-Paul Allouche and Jeffrey Shallit, Sums of digits and the Hurwitz zeta function, in: K. Nagasaka and E. Fouvry (eds.), Analytic Number Theory, Lecture Notes in Mathematics, Vol. 1434, Springer, Berlin, Heidelberg, 1990, pp. 19-30.
Eric Weisstein's World of Mathematics, Digit Sum.
FORMULA
Equals Sum_{k>=1} A014081(k)/(k*(k+1)) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021
EXAMPLE
0.2543226074...
MATHEMATICA
RealDigits[(3*Log[2])/2-Pi/4, 10, 120][[1]] (* Harvey P. Dale, May 28 2018 *)
CROSSREFS
KEYWORD
nonn,cons,easy,changed
AUTHOR
Eric W. Weisstein, Oct 31 2004
STATUS
approved

Search completed in 0.012 seconds