[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a267893 -id:a267893
     Sort: relevance | references | number | modified | created      Format: long | short | data
Square array read by antidiagonals upwards: T(n,k) = n-th number with k odd divisors.
+10
13
1, 2, 3, 4, 5, 9, 8, 6, 18, 15, 16, 7, 25, 21, 81, 32, 10, 36, 27, 162, 45, 64, 11, 49, 30, 324, 63, 729, 128, 12, 50, 33, 625, 75, 1458, 105, 256, 13, 72, 35, 648, 90, 2916, 135, 225, 512, 14, 98, 39, 1250, 99, 5832, 165, 441, 405, 1024, 17, 100, 42, 1296, 117, 11664, 189, 450, 567, 59049, 2048, 19, 121, 51, 2401, 126, 15625
OFFSET
1,2
COMMENTS
T(n,k) is the n-th positive integer with exactly k odd divisors.
This is a permutation of the natural numbers.
T(n,k) is also the n-th number j with the property that the symmetric representation of sigma(j) has k subparts (cf. A279387). - Omar E. Pol, Dec 27 2016
T(n,k) is also the n-th positive integer with exactly k partitions into consecutive parts. - Omar E. Pol, Aug 16 2018
EXAMPLE
The corner of the square array begins:
1, 3, 9, 15, 81, 45, 729, 105, 225, 405, ...
2, 5, 18, 21, 162, 63, 1458, 135, 441, 567, ...
4, 6, 25, 27, 324, 75, 2916, 165, 450, 810, ...
8, 7, 36, 30, 625, 90, 5832, 189, 882, 891, ...
16, 10, 49, 33, 648, 99, 11664, 195, 900, 1053, ...
32, 11, 50, 35, 1250, 117, 15625, 210, 1089, 1134, ...
64, 12, 72, 39, 1296, 126, 23328, 231, 1225, 1377, ...
128, 13, 98, 42, 2401, 147, 31250, 255, 1521, 1539, ...
...
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Apr 02 2016
STATUS
approved
Positive integers that have exactly 6 odd divisors.
+10
8
45, 63, 75, 90, 99, 117, 126, 147, 150, 153, 171, 175, 180, 198, 207, 234, 243, 245, 252, 261, 275, 279, 294, 300, 306, 325, 333, 342, 350, 360, 363, 369, 387, 396, 414, 423, 425, 468, 475, 477, 486, 490
OFFSET
1,1
COMMENTS
Numbers that can be formed in exactly 5 ways by summing sequences of 2 or more consecutive integers.
Column 6 of A266531. - Omar E. Pol, Apr 03 2016
Numbers n such that the symmetric representation of sigma(n) has 6 subparts. - Omar E. Pol, Dec 28 2016
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
Select[Range[500], Count[Divisors[#], _?OddQ]==6&] (* Harvey P. Dale, Mar 25 2015 *)
PROG
(PARI) is(n)=numdiv(n>>valuation(n, 2))==6 \\ Charles R Greathouse IV, Oct 28 2013
CROSSREFS
Numbers with k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, this sequence, A267697, A267891, A267892, A267893.
KEYWORD
nonn
AUTHOR
Philippe Beaudoin, Oct 23 2013
STATUS
approved
Numbers with 5 odd divisors.
+10
8
81, 162, 324, 625, 648, 1250, 1296, 2401, 2500, 2592, 4802, 5000, 5184, 9604, 10000, 10368, 14641, 19208, 20000, 20736, 28561, 29282, 38416, 40000, 41472, 57122, 58564, 76832, 80000, 82944, 83521, 114244, 117128, 130321, 153664, 160000, 165888, 167042, 228488, 234256, 260642, 279841
OFFSET
1,1
COMMENTS
Positive integers that have exactly five odd divisors.
Numbers k such that the symmetric representation of sigma(k) has 5 subparts. - Omar E. Pol, Dec 28 2016
Also numbers that can be expressed as the sum of k > 1 consecutive positive integers in exactly 4 ways; e.g., 81 = 40+41 = 26+27+28 = 11+12+13+14+15+16 = 5+6+7+8+9+10+11+12+13. - Julie Jones, Aug 13 2018
LINKS
FORMULA
A001227(a(n)) = 5.
Sum_{n>=1} 1/a(n) = 2 * P(4) - 1/8 = 0.00289017370127..., where P(4) is the value of the prime zeta function at 4 (A085964). - Amiram Eldar, Sep 16 2024
PROG
(PARI) isok(n) = sumdiv(n, d, (d%2)) == 5; \\ Michel Marcus, Apr 03 2016
(GAP) A:=List([1..700000], n->DivisorsInt(n));;
B:=List([1..Length(A)], i->Filtered(A[i], IsOddInt));;
a:=Filtered([1..Length(B)], i->Length(B[i])=5); # Muniru A Asiru, Aug 14 2018
CROSSREFS
Column 5 of A266531.
Numbers with k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, this sequence, A230577, A267697, A267891, A267892, A267893.
KEYWORD
nonn
AUTHOR
Omar E. Pol, Apr 03 2016
EXTENSIONS
More terms from Michel Marcus, Apr 03 2016
STATUS
approved
Numbers with 7 odd divisors.
+10
8
729, 1458, 2916, 5832, 11664, 15625, 23328, 31250, 46656, 62500, 93312, 117649, 125000, 186624, 235298, 250000, 373248, 470596, 500000, 746496, 941192, 1000000, 1492992, 1771561, 1882384, 2000000, 2985984, 3543122, 3764768, 4000000, 4826809, 5971968, 7086244, 7529536, 8000000, 9653618
OFFSET
1,1
COMMENTS
Positive integers that have exactly seven odd divisors.
Numbers k such that the symmetric representation of sigma(k) has 7 subparts. - Omar E. Pol, Dec 28 2016
Numbers that can be formed in exactly 6 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018
Numbers of the form p^6 * 2^k where p is an odd prime. - David A. Corneth, Aug 14 2018
LINKS
FORMULA
A001227(a(n)) = 7.
Sum_{n>=1} 1/a(n) = 2 * P(6) - 1/32 = 0.00289017370127..., where P(6) is the value of the prime zeta function at 6 (A085966). - Amiram Eldar, Sep 16 2024
PROG
(PARI) isok(n) = sumdiv(n, d, (d%2)) == 7; \\ Michel Marcus, Apr 03 2016
(PARI) upto(n) = {my(res = List()); forprime(p = 3, sqrtnint(n, 6), listput(res, p^6)); q = #res; for(i = 1, q, odd = res[i]; for(j = 1, logint(n \ odd, 2), listput(res, odd <<= 1))); listsort(res); res} \\ David A. Corneth, Aug 14 2018
(Python)
from sympy import integer_log, primerange, integer_nthroot
def A267697(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return int(n+x-sum(integer_log(x//p**6, 2)[0]+1 for p in primerange(3, integer_nthroot(x, 6)[0]+1)))
return bisection(f, n, n) # Chai Wah Wu, Feb 22 2025
CROSSREFS
Column 7 of A266531.
Numbers with k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, this sequence, A267891, A267892, A267893.
KEYWORD
nonn,easy,changed
AUTHOR
Omar E. Pol, Apr 03 2016
EXTENSIONS
More terms from Michel Marcus, Apr 03 2016
STATUS
approved
Numbers with 8 odd divisors.
+10
8
105, 135, 165, 189, 195, 210, 231, 255, 270, 273, 285, 297, 330, 345, 351, 357, 375, 378, 385, 390, 399, 420, 429, 435, 455, 459, 462, 465, 483, 510, 513, 540, 546, 555, 561, 570, 594, 595, 609, 615, 621, 627, 645, 651, 660, 663, 665, 690, 702, 705, 714, 715, 741, 750, 756, 759, 770, 777, 780, 783, 795, 798, 805, 837
OFFSET
1,1
COMMENTS
Positive integers that have exactly eight odd divisors.
Numbers n such that the symmetric representation of sigma(n) has 8 subparts. - Omar E. Pol, Dec 29 2016
Numbers n such that A000265(n) has prime signature {7} or {3,1} or {1,1,1}, i.e., is in A092759 or A065036 or A007304. - Robert Israel, Mar 15 2018
Numbers that can be formed in exactly 7 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018
LINKS
FORMULA
A001227(a(n)) = 8.
MAPLE
filter:= proc(n) local r;
r:= n/2^padic:-ordp(n, 2);
numtheory:-tau(r)=8
end proc:
select(filter, [$1..1000]); # Robert Israel, Mar 15 2018
MATHEMATICA
Select[Range@ 840, Length@ Select[Divisors@ #, OddQ] == 8 &] (* Michael De Vlieger, Dec 30 2016 *)
PROG
(PARI) isok(n) = sumdiv(n, d, (d%2)) == 8; \\ after Michel Marcus
(Magma) [n: n in [1..1000] | #[d: d in Divisors(n) | IsOdd(d)] eq 8]; // Bruno Berselli, Apr 04 2016
CROSSREFS
Column 8 of A266531.
Numbers with exactly k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, A267697, this sequence, A267892, A267893.
KEYWORD
nonn
AUTHOR
Omar E. Pol, Apr 03 2016
STATUS
approved
Numbers with 9 odd divisors.
+10
8
225, 441, 450, 882, 900, 1089, 1225, 1521, 1764, 1800, 2178, 2450, 2601, 3025, 3042, 3249, 3528, 3600, 4225, 4356, 4761, 4900, 5202, 5929, 6050, 6084, 6498, 6561, 7056, 7200, 7225, 7569, 8281, 8450, 8649, 8712, 9025, 9522, 9800, 10404, 11858, 12100, 12168, 12321, 12996, 13122, 13225, 14112, 14161, 14400, 14450, 15129
OFFSET
1,1
COMMENTS
Positive integers that have exactly nine odd divisors.
Numbers k such that the symmetric representation of sigma(k) has 9 subparts. - Omar E. Pol, Dec 29 2016
From Robert Israel, Dec 29 2016: (Start)
Numbers k such that A000265(k) is in A030627.
Numbers of the form 2^j*p^8 or 2^j*p^2*q^2 where p and q are distinct odd primes. (End)
Numbers that can be formed in exactly 8 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018
LINKS
FORMULA
A001227(a(n)) = 9.
Sum_{n>=1} 1/a(n) = (P(2)-1/4)^2 - P(4) + 2*P(8) + 7/128 = 0.026721189882055998428..., where P(s) is the prime zeta function. - Amiram Eldar, Sep 16 2024
MAPLE
N:= 10^5: # to get all terms <= N
P:= select(isprime, [seq(i, i=3..floor(sqrt(N)/2), 2)]);
Aodd:= select(`<=`, map(t -> t^8, P) union {seq(seq(P[i]^2*P[j]^2, i=1..j-1), j=1..nops(P))}, N):
A:= map(t -> seq(2^j*t, j=0..ilog2(N/t)), Aodd):
sort(convert(A, list)); # Robert Israel, Dec 29 2016
MATHEMATICA
Select[Range[5^6], Length[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] == 9 &] (* Michael De Vlieger, Apr 04 2016 *)
Select[Range[16000], Total[Boole[OddQ[Divisors[#]]]]==9&] (* Harvey P. Dale, May 12 2019 *)
PROG
(PARI) isok(n) = sumdiv(n, d, (d%2)) == 9; \\ after Michel Marcus.
(GAP) A:=List([1..16000], n->DivisorsInt(n));; B:=List([1..Length(A)], i->Filtered(A[i], IsOddInt));;
a:=Filtered([1..Length(B)], i->Length(B[i])=9); # Muniru A Asiru, Aug 14 2018
CROSSREFS
Column 9 of A266531.
Numbers with exactly k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, A267697, A267891, this sequence, A267893.
KEYWORD
nonn
AUTHOR
Omar E. Pol, Apr 03 2016
STATUS
approved
Numbers whose number of odd divisors is nonprime.
+10
2
1, 2, 4, 8, 15, 16, 21, 27, 30, 32, 33, 35, 39, 42, 45, 51, 54, 55, 57, 60, 63, 64, 65, 66, 69, 70, 75, 77, 78, 84, 85, 87, 90, 91, 93, 95, 99, 102, 105, 108, 110, 111, 114, 115, 117, 119, 120, 123, 125, 126, 128, 129, 130, 132, 133, 135, 138, 140, 141, 143, 145, 147, 150
OFFSET
1,2
LINKS
EXAMPLE
The divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42. The odd divisors of 42 are 1, 3, 7, 21. There are 4 odd divisors of 42 and 4 is a nonprime number, so 42 is in the sequence.
MATHEMATICA
Select[Range[150], !PrimeQ[DivisorSigma[0, #/2^IntegerExponent[#, 2]]] &] (* Amiram Eldar, Dec 03 2020 *)
PROG
(PARI) isok(n) = ! isprime(sumdiv(n, d, (d%2))); \\ Michel Marcus, Apr 04 2016
KEYWORD
nonn
AUTHOR
Omar E. Pol, Apr 04 2016
STATUS
approved

Search completed in 0.010 seconds