[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a265109 -id:a265109
     Sort: relevance | references | number | modified | created      Format: long | short | data
Let F(n) = Q(n) - P(n) be the Fortunate numbers (A005235); sequence gives n such that F(n) = prime(n+1).
+10
6
1, 2, 3, 6, 7, 8, 14, 16, 17, 21, 73, 801, 1971, 3332, 3469, 3509, 4318, 7986, 41292
OFFSET
1,2
COMMENTS
Positive n such that A002110(n) + A000040(n+1) is prime. - Robert Israel, Dec 02 2015
Subsequence of A265109. - Altug Alkan, Dec 02 2015
LINKS
Antonín Čejchan, Michal Křížek, and Lawrence Somer, On Remarkable Properties of Primes Near Factorials and Primorials, Journal of Integer Sequences, Vol. 25 (2022), Article 22.1.4.
S. W. Golomb, The evidence for Fortune's conjecture, Math. Mag. 54 (1981), 209-210.
EXAMPLE
a(10) = 21 because A002110(21) + prime(22) = 40729680599249024150621323549 = 2*3*5*...*67*71*73 + 79 is prime.
MAPLE
p:= 3:
A[1]:= 1:
count:= 1:
Primorial:= 2:
for n from 2 to 1000 do
Primorial:= Primorial*p;
p:= nextprime(p);
if isprime(Primorial + p) then
count:= count+1;
A[count]:= n;
fi
od:
seq(A[i], i=1..count); # Robert Israel, Dec 02 2015
MATHEMATICA
Select[Range@ 801, PrimeQ[Product[Prime@ k, {k, #}] + Prime[# + 1]] &] (* Michael De Vlieger, Dec 02 2015 *)
PROG
(PARI) lista(nn) = {s = 1; for(k=1, nn, s *= prime(k); if(ispseudoprime(s + prime(k+1)), print1(k, ", ")); ); } \\ Altug Alkan, Dec 02 2015
KEYWORD
nonn,more
EXTENSIONS
a(10)-a(11) were found by Labos Elemer, May 02 2000
a(12) from Ralf Stephan, Oct 20 2002
Offset changed by Altug Alkan, Dec 02 2015
a(13) from Michael De Vlieger, Dec 02 2015
a(14)-a(18) from Altug Alkan, Dec 02 2015
a(19) from Henri Lifchitz, Nov 08 2024
STATUS
approved
a(n) = least k such that prime(n) + A002110(k) is prime.
+10
3
0, 1, 1, 2, 1, 2, 1, 4, 2, 1, 2, 2, 1, 3, 2, 2, 1, 2, 2, 1, 2, 3, 2, 5, 2, 1, 2, 1, 3, 5, 3, 2, 1, 4, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 1, 3, 3, 2, 1, 4, 2, 1, 3, 2, 2, 2, 1, 2, 2, 1, 3, 4, 2, 1, 4, 3, 2, 3, 1, 3, 2, 3, 2, 2, 3, 2, 3, 4, 3, 3, 1, 4, 1, 2, 5, 2, 3, 2, 1, 4, 4, 3, 5, 3, 4, 2, 4, 1, 4, 2
OFFSET
1,4
COMMENTS
Conjecture: every prime number can be written as +- p(n) -+ p(k)# where p(i)=i-th prime, p(i)#=i-th primorial.
The sequence grows remarkably slowly. The largest number occurring within the first 50000 elements is 90. - Stefan Steinerberger, Apr 10 2006
a(1) = 0 is the minimum value of a(n). It is also unrepeated in this sequence. - Altug Alkan, Dec 02 2015
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000 (corrected by Ray Chandler, Jan 19 2019)
EXAMPLE
p(8)=19;
19 + 2 = 21 = 3*7,
19 + 6 = 25 = 5*5, and
19 + 30 = 49 = 7*7, but
19 + 210 = 229, which is prime; 210=p(4)#, so a(8)=4.
MAPLE
primorial:= proc(n) option remember: ithprime(n)*procname(n-1) end proc:
primorial(0):= 1:
f:= proc(n) local k, p;
p:= ithprime(n);
for k from 0 do if isprime(p+primorial(k)) then return k fi od:
end proc:
map(f, [$1..100]); # Robert Israel, Aug 27 2015
MATHEMATICA
Table[k := 0; While[Not[PrimeQ[Prime[n]+Product[Prime[i], {i, 1, k}]]], k++ ]; k, {n, 1, 100}] (* Stefan Steinerberger, Apr 10 2006 *)
PROG
(PARI) primo(n) = prod(i=1, n, prime(i));
a(n) = {k=0; while(!isprime(prime(n)+primo(k)), k++); k; } \\ Michel Marcus, Aug 27 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Pierre CAMI, Dec 30 2004
EXTENSIONS
More terms from Stefan Steinerberger, Apr 10 2006
a(1) = 0 added and name edited by Altug Alkan, Dec 02 2015
STATUS
approved

Search completed in 0.007 seconds