[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a249425 -id:a249425
     Sort: relevance | references | number | modified | created      Format: long | short | data
Largest m such that m! divides the product of elements on row n of Pascal's triangle: a(n) = A055881(A001142(n)).
+10
21
1, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 7, 12, 6, 4, 1, 16, 2, 18, 4, 6, 10, 22, 11, 4, 12, 2, 6, 28, 25, 30, 1, 10, 16, 6, 36, 36, 18, 12, 40, 40, 6, 42, 10, 23, 22, 46, 19, 6, 4, 16, 12, 52, 2, 10, 35, 18, 28, 58, 47, 60, 30, 63, 1, 12, 10, 66, 16, 22, 49, 70, 41, 72, 36, 4, 18, 10, 12, 78, 80, 2
OFFSET
0,3
COMMENTS
A000225 gives the positions of ones.
A006093 seems to give all such k, that a(k) = k.
LINKS
FORMULA
a(n) = A055881(A001142(n)).
EXAMPLE
Binomial coeff. Their product Largest k!
A007318 A001142(n) which divides
Row 0 1 1 1!
Row 1 1 1 1 1!
Row 2 1 2 1 2 2!
Row 3 1 3 3 1 9 1!
Row 4 1 4 6 4 1 96 4! (96 = 4*24)
Row 5 1 5 10 10 5 1 2500 2! (2500 = 1250*2)
Row 6 1 6 15 20 15 6 1 162000 6! (162000 = 225*720)
PROG
(PARI)
A249151(n) = { my(uplim, padicvals, b); uplim = (n+3); padicvals = vector(uplim); for(k=0, n, b = binomial(n, k); for(i=1, uplim, padicvals[i] += valuation(b, prime(i)))); k = 1; while(k>0, for(i=1, uplim, if((padicvals[i] -= valuation(k, prime(i))) < 0, return(k-1))); k++); };
\\ Alternative implementation:
A001142(n) = prod(k=1, n, k^((k+k)-1-n));
A055881(n) = { my(i); i=2; while((0 == (n%i)), n = n/i; i++); return(i-1); }
for(n=0, 4096, write("b249151.txt", n, " ", A249151(n)));
(Scheme) (define (A249151 n) (A055881 (A001142 n)))
CROSSREFS
One more than A249150.
Cf. A249423 (numbers k such that a(k) = k+1).
Cf. A249429 (numbers k such that a(k) > k).
Cf. A249433 (numbers k such that a(k) < k).
Cf. A249434 (numbers k such that a(k) >= k).
Cf. A249424 (numbers k such that a(k) = (k-1)/2).
Cf. A249428 (and the corresponding values, i.e. numbers n such that A249151(2n+1) = n).
Cf. A249425 (record positions).
Cf. A249427 (record values).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 25 2014
STATUS
approved
Odd integers n such that A249151(n) = (n-1)/2.
+10
8
3, 5, 9, 13, 21, 23, 25, 33, 37, 45, 57, 61, 73, 81, 85, 93, 105, 117, 121, 133, 141, 145, 157, 165, 177, 193, 201, 205, 213, 217, 225, 253, 261, 273, 277, 297, 301, 313, 325, 333, 345, 357, 361, 381, 385, 393, 397, 421, 445, 453, 457, 465, 477, 481, 501, 513, 525, 537, 541, 553, 561, 565, 585, 613, 621, 625, 633, 661, 673, 693, 697
OFFSET
1,1
LINKS
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A249424 (MATCHING-POS 1 0 (lambda (n) (and (odd? n) (= (/ (- n 1) 2) (A249151 n))))))
CROSSREFS
A249428 gives the corresponding values (n-1)/2.
Subsequence of A249433.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 28 2014
STATUS
approved
Number of trailing zeros in the factorial base representation of products of binomial coefficients: a(n) = A230403(A001142(n)).
+10
7
0, 0, 1, 0, 3, 1, 5, 0, 1, 3, 9, 6, 11, 5, 3, 0, 15, 1, 17, 3, 5, 9, 21, 10, 3, 11, 1, 5, 27, 24, 29, 0, 9, 15, 5, 35, 35, 17, 11, 39, 39, 5, 41, 9, 22, 21, 45, 18, 5, 3, 15, 11, 51, 1, 9, 34, 17, 27, 57, 46, 59, 29, 62, 0, 11, 9, 65, 15, 21, 48, 69, 40, 71, 35, 3, 17, 9, 11, 77, 79, 1
OFFSET
0,5
COMMENTS
a(n) = A249151(n)-1. Please see the comments and graph of that sequence.
FORMULA
a(n) = A230403(A001142(n)).
PROG
(Scheme) (define (A249150 n) (A230403 (A001142 n)))
CROSSREFS
One less than A249151.
Cf. A249423 (values k such that a(k) = k).
Cf. A249425 (record positions).
Cf. A249426 (record values).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 25 2014
STATUS
approved
Integers n such that A249150(n) = n; integers n such that A249151(n) = n+1.
+10
5
0, 35, 39, 62, 79, 83, 89, 104, 107, 131, 143, 149, 153, 159, 164, 167, 175, 179, 181, 194, 197, 199, 207, 209, 219, 259, 263, 269, 272, 274, 279, 285, 287, 296, 299, 305, 307, 311, 314, 319, 329, 339, 356, 359, 363, 373, 377, 379, 384, 389, 391, 395, 399, 407, 415, 417, 419, 424, 428, 431, 441, 449, 455, 461, 467, 475, 489, 512
OFFSET
1,2
COMMENTS
Integers n such that {product of elements on row n of Pascal's triangle} is divisible by (n+1)! but not by (n+2)!
LINKS
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A249423 (FIXED-POINTS 1 0 A249150))
CROSSREFS
Subsequence of A249434 and of A249429; it differs from the latter for the first time at n=17, where a(17) = 175 > 174 = A249429(17).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 28 2014
STATUS
approved
Record values in A249150.
+10
4
0, 1, 3, 5, 9, 11, 15, 17, 21, 27, 29, 35, 39, 41, 45, 51, 57, 59, 62, 65, 69, 71, 77, 79, 81, 83, 87, 89, 95, 99, 101, 104, 105, 107, 111, 118, 125, 129, 131, 135, 137, 143, 147, 149, 153, 155, 159, 161, 164, 165, 167, 171, 177, 179, 181, 189, 191, 194, 195, 197, 199, 207, 209, 219, 221, 225, 227, 231, 237, 239, 249, 255
OFFSET
1,3
LINKS
FORMULA
a(n) = A249150(A249425(n)).
a(n) = A249427(n) - 1.
PROG
(Scheme) (define (A249426 n) (A249150 (A249425 n)))
CROSSREFS
One less than A249427.
Differs from A040976 a(n) = prime(n) - 2 for the first time at n=19, where a(n) = 62, while A040976(19) = 65. And larger terms differs only a few times.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 28 2014
STATUS
approved
Record values in A249151.
+10
4
1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 63, 66, 70, 72, 78, 80, 82, 84, 88, 90, 96, 100, 102, 105, 106, 108, 112, 119, 126, 130, 132, 136, 138, 144, 148, 150, 154, 156, 160, 162, 165, 166, 168, 172, 178, 180, 182, 190, 192, 195, 196, 198, 200, 208, 210, 220, 222, 226, 228, 232, 238, 240, 250, 256
OFFSET
1,2
LINKS
FORMULA
a(n) = A249151(A249425(n)).
a(n) = A249426(n) + 1.
PROG
(Scheme) (define (A249427 n) (A249151 (A249425 n)))
CROSSREFS
One more than A249426.
Differs from A006093 for the first at n=19, where a(19) = 63, while A006093(19) = 66.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 28 2014
STATUS
approved

Search completed in 0.005 seconds