[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a231716 -id:a231716
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(0) = 0; for n >= 1: a(n) = largest m such that n >= m!.
+10
60
0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5
OFFSET
0,3
COMMENTS
For n >= 1, a(n) = the number of significant digits in n's factorial base representation (A007623).
After zero, which occurs once, each n occurs A001563(n) times.
Number of iterations (...f_4(f_3(f_2(n))))...) such that the result is < 1, where f_j(x):=x/j. - Hieronymus Fischer, Apr 30 2012
For n > 0: a(n) = length of row n in table A108731. - Reinhard Zumkeller, Jan 05 2014
REFERENCES
F. Smarandache, "f-Inferior and f-Superior Functions - Generalization of Floor Functions", Arizona State University, Special Collections.
LINKS
Yi Yuan and Zhang Wenpeng, On the Mean Value of the Analogue of Smarandache Function, Smarandache Notions J., Vol. 15.
FORMULA
From Hieronymus Fischer, Apr 30 2012: (Start)
a(n!) = a((n-1)!)+1, for n>1.
G.f.: 1/(1-x)*Sum_{k>=1} x^(k!).
The explicit first terms of the g.f. are: (x+x^2+x^6+x^24+x^120+x^720...)/(1-x).
(End)
Other identities:
For all n >= 0, a(n) = A090529(n+1) - 1. - Reinhard Zumkeller, Jan 05 2014
For all n >= 1, a(n) = A060130(n) + A257510(n). - Antti Karttunen, Apr 27 2015
EXAMPLE
a(4) = 2 because 2! <= 4 < 3!.
MAPLE
0, seq(m$(m*m!), m=1..5); # Robert Israel, Apr 27 2015
MATHEMATICA
Table[m = 1; While[m! <= n, m++]; m - 1, {n, 0, 104}] (* Jayanta Basu, May 24 2013 *)
Table[Floor[Last[Reduce[x! == n && x > 0, x]]], {n, 120}] (* Eric W. Weisstein, Sep 13 2024 *)
PROG
(Haskell)
a084558 n = a090529 (n + 1) - 1 -- Reinhard Zumkeller, Jan 05 2014
(PARI) a(n)={my(m=0); while(n\=m++, ); m-1} \\ R. J. Cano, Apr 09 2018
(Python)
def A084558(n):
i=1
while n: i+=1; n//=i
return(i-1)
print(list(map(A084558, range(101)))) # Nathan L. Skirrow, May 28 2023
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Jun 23 2003
EXTENSIONS
Name clarified by Antti Karttunen, Apr 27 2015
STATUS
approved
Write n in factorial base, then replace each nonzero digit d of radix k with k-d.
+10
59
0, 1, 4, 5, 2, 3, 18, 19, 22, 23, 20, 21, 12, 13, 16, 17, 14, 15, 6, 7, 10, 11, 8, 9, 96, 97, 100, 101, 98, 99, 114, 115, 118, 119, 116, 117, 108, 109, 112, 113, 110, 111, 102, 103, 106, 107, 104, 105, 72, 73, 76, 77, 74, 75, 90, 91, 94, 95, 92, 93, 84, 85, 88, 89, 86, 87, 78, 79, 82, 83, 80, 81, 48, 49, 52, 53, 50, 51, 66, 67, 70, 71, 68
OFFSET
0,3
COMMENTS
Analogous to A004488 or A048647 for the factorial base.
A self-inverse permutation of the natural numbers.
From Antti Karttunen, Aug 16-29 2016: (Start)
Consider the following way to view a factorial base representation of nonnegative integer n. For each nonzero digit d_i present in the factorial base representation of n (where i is the radix = 2.. = one more than 1-based position from the right), we place a pebble to the level (height) d_i at the corresponding column i of the triangular diagram like below, while for any zeros the corresponding columns are left empty:
.
Level
6 o
─ ─
5 . .
─ ─ ─
4 . . .
─ ─ ─ ─
3 . . . .
─ ─ ─ ─ ─
2 . . o . .
─ ─ ─ ─ ─ ─
1 . o . . o o
─ ─ ─ ─ ─ ─ ─
Radix: 7 6 5 4 3 2
Digits: 6 1 2 0 1 1 = A007623(4491)
Instead of levels, we can observe on which "slope" each pebble (nonzero digit) is located at. Formally, the slope of nonzero digit d_i with radix i is (i - d_i). Thus in above example, both the most significant digit (6) and the least significant 1 are on slope 1 (called "maximal slope", because it contains digits that are maximal allowed in those positions), while the second 1 from the right is on slope 2 ("submaximal slope").
This involution (A225901) sends each nonzero digit at level k to the slope k (and vice versa) by flipping such a diagram by the shallow diagonal axis that originates from the bottom right corner. Thus, from above diagram we obtain:
Slope (= digit's radix - digit's value)
1
2 .
3 . .╲
4 . .╲o╲
5 . .╲.╲.╲
6 . .╲.╲o╲.╲
. .╲.╲.╲.╲o╲
o╲.╲.╲.╲.╲o╲
-----------------
1 5 3 0 2 1 = A007623(1397)
and indeed, a(4491) = 1397 and a(1397) = 4491.
Thus this permutation maps between polynomial encodings A275734 & A275735 and all the respective sequences obtained from them, where the former set of sequences are concerned with the "slopes" and the latter set with the "levels" of the factorial base representation. See the Crossrefs section.
Sequences A231716 and A275956 are closed with respect to this sequence, in other words, for all n, a(A231716(n)) is a term of A231716 and a(A275956(n)) is a term of A275956.
(End)
FORMULA
From Antti Karttunen, Aug 29 2016: (Start)
a(0) = 0; for n >= 1, a(n) = A276091(A275736(n)) + A153880(a(A257684(n))).
or, for n >= 1, a(n) = A276149(n) + a(A257687(n)).
(End)
Other identities. For n >= 0:
a(n!) = A001563(n).
a(n!-1) = A007489(n-1).
From Antti Karttunen, Aug 16 2016: (Start)
A275734(a(n)) = A275735(n) and vice versa, A275735(a(n)) = A275734(n).
A060130(a(n)) = A060130(n). [The flip preserves the number of nonzero digits.]
A153880(n) = a(A255411(a(n))) and A255411(n) = a(A153880(a(n))). [This involution conjugates between the two fundamental factorial base shifts.]
a(n) = A257684(a(A153880(n))) = A266193(a(A255411(n))). [Follows from above.]
A276011(n) = A273662(a(A273670(n))).
A276012(n) = A273663(a(A256450(n))).
(End)
EXAMPLE
a(1000) = a(1*6! + 2*5! + 1*4! + 2*3! + 2*2!) = (7-1)*6! + (6-2)*5! + (5-1)*4! + (4-2)*3! + (3-2)*2! = 4910.
a(1397) = a(1*6! + 5*5! + 3*4! + 0*3! + 2*2! + 1*1!) = (7-1)*6! + (6-5)*5! + (5-3)*4! + (3-2)*2! + (2-1)*1! = 4491.
MATHEMATICA
b = MixedRadix[Reverse@ Range[2, 12]]; Table[FromDigits[Map[Boole[# > 0] &, #] (Reverse@ Range[2, Length@ # + 1] - #), b] &@ IntegerDigits[n, b], {n, 0, 82}] (* Version 10.2, or *)
f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Range[# + 1] <= n &]; Most@ Rest[a][[All, 1]] /. {} -> {0}]; g[w_List] := Total[Times @@@ Transpose@ {Map[Times @@ # &, Range@ Range[0, Length@ w]], Reverse@ Append[w, 0]}]; Table[g[Map[Boole[# > 0] &, #] (Reverse@ Range[2, Length@ # + 1] - #)] &@ f@ n, {n, 0, 82}] (* Michael De Vlieger, Aug 29 2016 *)
PROG
(PARI) a(n)=my(s=0, d, k=2); while(n, d=n%k; n=n\k; if(d, s=s+(k-d)*(k-1)!); k=k+1); return(s)
(Scheme)
(define (A225901 n) (let loop ((n n) (z 0) (m 2) (f 1)) (cond ((zero? n) z) (else (loop (quotient n m) (if (zero? (modulo n m)) z (+ z (* f (- m (modulo n m))))) (+ 1 m) (* f m))))))
;; One implementing the first recurrence, with memoization-macro definec:
(definec (A225901 n) (if (zero? n) n (+ (A276091 (A275736 n)) (A153880 (A225901 (A257684 n))))))
;; Antti Karttunen, Aug 29 2016
(Python)
from sympy import factorial as f
def a(n):
s=0
k=2
while(n):
d=n%k
n=(n//k)
if d: s=s+(k - d)*f(k - 1)
k+=1
return s
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 19 2017
CROSSREFS
Cf. A275959 (fixed points), A231716, A275956.
This involution maps between the following sequences related to "levels" and "slopes" (see comments): A275806 <--> A060502, A257511 <--> A260736, A264990 <--> A275811, A275729 <--> A275728, A275948 <--> A275946, A275949 <--> A275947, A275964 <--> A275962, A059590 <--> A276091.
KEYWORD
nonn,base
AUTHOR
Paul Tek, May 20 2013
STATUS
approved
Numbers k whose factorial base representation A007623(k) does not contain any nonleading zeros.
+10
15
1, 3, 5, 9, 11, 15, 17, 21, 23, 33, 35, 39, 41, 45, 47, 57, 59, 63, 65, 69, 71, 81, 83, 87, 89, 93, 95, 105, 107, 111, 113, 117, 119, 153, 155, 159, 161, 165, 167, 177, 179, 183, 185, 189, 191, 201, 203, 207, 209, 213, 215, 225, 227, 231, 233, 237, 239, 273
OFFSET
1,2
COMMENTS
a(A003422(n)) = A007489(n).
a(A007489(n)) = (n+1)!-1 thus A007489(n) gives the number of terms less than (n+1)! in this sequence.
Equivalently, there are n! terms in the sequence with their magnitude in range n!..(n+1)!.
Also numbers k such that A304036(k) = 1 for k > 0. - Seiichi Manyama, May 06 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..5913 from Antti Karttunen)
MATHEMATICA
q[n_] := Module[{k = n, m = 2, c = 0, r}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, If[r == 0, c++]; m++]; c == 0]; Select[Range[300], q] (* Amiram Eldar, Jan 23 2024 *)
PROG
(Scheme, with Antti Karttunen's IntSeq-library): (define A227157 (NONZERO-POS 1 1 A208575))
CROSSREFS
The sequence gives all n for which A208575(n) is not zero. Complement of A227187. Subsets: A071156 (apart from zero), A231716, A231720.
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Jul 04 2013
STATUS
approved
In primorial base: a(n) is obtained by replacing each nonzero digit of n with its inverse (see Comments for precise definition).
+10
12
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 12, 13, 14, 15, 16, 17, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 42, 43, 44, 45, 46, 47, 54, 55, 56, 57, 58, 59, 120, 121, 122, 123, 124, 125
OFFSET
0,3
COMMENTS
For a number n >= 0, let d_k, ..., d_0 be the digits of n in primorial base (n = Sum_{i=0..k} d_i * A002110(i), and for i=0..k, 0 <= d_i < prime(i+1)); the digits of a(n) in primorial base, say e_k, ..., e_0, satisfy: for i=0..k:
- if d_i = 0, then e_i = 0,
- if d_i > 0, then e_i is the inverse of d_i mod prime(i+1) (in other words, 1 <= e_i < prime(i+1) and e_i * d_i = 1 mod prime(i+1)).
This sequence is a self-inverse permutation of the nonnegative numbers.
a(n) < A002110(k) iff n < A002110(k) for any n >= 0 and k >= 0.
a(n) = n iff the digits of n in primorial base, say d_k, ..., d_0, satisfy: for i=0..k: d_i = 0, 1 or prime(i+1)-1.
For k > 0: the plotting of the first A002110(k) terms can be obtained by arranging prime(k) copies of the plotting of the first A002110(k-1) terms in a prime(k) X prime(k) grid:
- one copy in the cell at position (0,0),
- one copy in any cell at position (i,j) with i*j = 1 mod prime(k) (with 0 < i < prime(k) and 0 < j < prime(k)).
FORMULA
a(n) = A276085(A328617(A276086(n))). - Antti Karttunen, Oct 26 2019
EXAMPLE
The digits of 7772 in primorial base are 3,4,0,0,1,0.
Also:
- 9 * 3 = 27 = 1 mod prime(6) = 13,
- 3 * 4 = 12 = 1 mod prime(5) = 11,
- 1 * 1 = 1 mod prime(2) = 3.
Hence, the digits of a(7772) in primorial base are 9,3,0,0,1,0,
and a(7772) = 9 * 11# + 3 * 7# + 1 * 2# = 21422.
PROG
(PARI) a(n) = my (pr=1, p=2, v=0); while (n>0, my (d=n%p); if (d>0, v += pr * lift(1/Mod(d, p))); pr *= p; n \= p; p = next prime(p+1)); return (v)
KEYWORD
nonn,base,look
AUTHOR
Rémy Sigrist, Jun 28 2017
STATUS
approved
Partial sums of phitorials: a(n) = A001088(1)+A001088(2)+...+A001088(n).
+10
5
1, 2, 4, 8, 24, 56, 248, 1016, 5624, 24056, 208376, 945656, 9793016, 62877176, 487550456, 3884936696, 58243116536, 384392195576, 6255075618296, 53220543000056, 616806151581176, 6252662237392376, 130241496125238776, 1122152167228009976, 20960365589283433976
OFFSET
1,2
COMMENTS
a(n) gives the index to the first term in each subrange of A231716. Specifically, for all n>=1, A231716(a(n)) = A007489(n).
LINKS
FORMULA
a(n) = 1 if n=1, otherwise A001088(n)+a(n-1).
a(n) = A231722(n)+1. [Follows from the definitions]
MATHEMATICA
Accumulate[FoldList[Times, EulerPhi[Range[30]]]] (* Harvey P. Dale, Apr 02 2018 *)
PROG
(Scheme, with memoizing macro definec from Antti Karttunen's IntSeq-library)
(definec (A231721 n) (if (< n 2) n (+ (A001088 n) (A231721 (- n 1)))))
CROSSREFS
Cf. A001088 ("phitorials"), A231722, A231716, A007489.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 27 2013
STATUS
approved
Partial sums of A001088 starting from its second term; a(1)=0, a(n) = A001088(2)+...+A001088(n).
+10
5
0, 1, 3, 7, 23, 55, 247, 1015, 5623, 24055, 208375, 945655, 9793015, 62877175, 487550455, 3884936695, 58243116535, 384392195575, 6255075618295, 53220543000055, 616806151581175, 6252662237392375, 130241496125238775, 1122152167228009975, 20960365589283433975
OFFSET
1,3
COMMENTS
a(n+1) gives the index to the last term in each row of A231716. Specifically, for all n>=1, A231716(a(n+1)) = A033312(n+1).
a(n) = natural number which is written as the n-th repunit in "totient phi number system": 0, 1, 10, 11, 100, 101, 110, 111, 200, 201, 210, 211, 300, 301, 310, 311, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 1200, ..., and so on. Note how the 1st, the 3rd, the 7th and 23rd terms of this list are 1, 11, 111, and 1111.
In this number system the i-th digit from right (the least significant digit = digit_0) may contain integers in range 0..A000010(i+3)-1, and the value of the number is obtained as sum_{i=0..} digit_i * A001088(i+2).
LINKS
FORMULA
a(n) = A231721(n)-1. [The terms are one less than the partial sums of "phitorials", A001088, cumulatively summed from their first term]
MAPLE
with(numtheory): A231722:=n->add(product(phi(k), k=1..i), i=2..n): seq(A231722(n), n=1..20); # Wesley Ivan Hurt, Aug 09 2014
MATHEMATICA
Table[Sum[Product[EulerPhi[k], {k, i}], {i, 2, n}], {n, 20}] (* Wesley Ivan Hurt, Aug 09 2014 *)
PROG
(Scheme)
(define (A231722 n) (- (A231721 n) 1))
(PARI) a(n) = sum(i=2, n, prod(k=1, i, eulerphi(k))); \\ Michel Marcus, Aug 09 2014
CROSSREFS
One less than A231721.
Cf. A000010 (Euler's totient function phi), A001088 (its partial products, "phitorials"), A231716, A033312.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 27 2013
STATUS
approved
For n with a unique factorial base representation n = du*u! + ... + d2*2! + d1*1! (each di in range 0..i, cf. A007623), a(n) = Product_{i=1..u} (gcd(d_i,i+1) mod i+1), where u is given by A084558(n).
+10
2
1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2
OFFSET
1,15
LINKS
EXAMPLE
For n=13, with factorial base representation '201' (= A007623(13), 2*3! + 0*2! + 1*1! = 13) we have, starting from the least significant digit, (gcd(1,2) mod 2)*(gcd(0,3) mod 3)*(gcd(2,4) mod 4) = (1 mod 2)*(3 mod 3)*(2 mod 4) = 1*0*2 = 0, thus a(13)=0.
For n=17, with factorial base representation '221' (= A007623(17), 2*3! + 2*2! + 1*1! = 17) we have, starting from the least significant digit, (gcd(1,2) mod 2)*(gcd(2,3) mod 3)*(gcd(2,4) mod 4) = (1 mod 2)*(1 mod 3)*(2 mod 4) = 1*1*2 = 2, thus a(17)=2.
PROG
(Scheme)
(define (A231715 n) (let loop ((n n) (i 2) (p 1)) (cond ((zero? n) p) (else (loop (floor->exact (/ n i)) (+ i 1) (* p (modulo (gcd (modulo n i) i) i)))))))
CROSSREFS
Cf. A231716 (positions of ones), A227157 (the positions of nonzero terms), A007623.
Each a(n) <= A208575(n).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 12 2013
STATUS
approved

Search completed in 0.011 seconds