[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a222295 -id:a222295
     Sort: relevance | references | number | modified | created      Format: long | short | data
Conjectured number of Fibonacci numbers with exactly n 0-bits in their binary representation.
+10
6
3, 5, 2, 4, 3, 1, 2, 3, 5, 1, 3, 5, 3, 3, 2, 1, 6, 1, 2, 3, 3, 2, 0, 3, 5, 4, 4, 3, 4, 2, 1, 2, 6, 1, 2, 2, 5, 4, 3, 5, 2, 2, 2, 1, 2, 2, 2, 5, 6, 3, 2, 2, 3, 1, 5, 1, 1, 0, 8, 4, 3, 3, 3, 3, 5, 4, 4, 2, 2, 2, 2, 3, 2, 6, 3, 0, 0, 2, 5, 5, 1, 6, 5, 0, 3, 5, 1
OFFSET
0,1
MATHEMATICA
f = Fibonacci[Range[0, 100]]; Table[Length[Select[f, Count[IntegerDigits[#, 2], 0] == n &]], {n, 0, 20}]
CROSSREFS
Cf. A004685 (Fibonacci numbers in binary), A214853 (one 0-bit), A222602.
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 08 2013
STATUS
approved
Irregular triangle of conjectured Fibonacci numbers with exactly n 0-bits in their binary representation.
+10
6
1, 1, 3, 0, 2, 5, 13, 55, 21, 987, 8, 89, 233, 377, 34, 1597, 28657, 6765, 144, 610, 17711, 196418, 514229, 2584, 4181, 10946, 121393, 317811, 3524578, 46368, 1346269, 1836311903, 75025, 5702887, 24157817, 102334155, 165580141, 832040, 14930352, 701408733
OFFSET
0,3
EXAMPLE
The irregular triangle begins
{1, 1, 3},
{0, 2, 5, 13, 55},
{21, 987},
{8, 89, 233, 377},
{34, 1597, 28657},
{6765},
{144, 610},
{17711, 196418, 514229},
{2584, 4181, 10946, 121393, 317811},
{3524578}, {46368, 1346269, 1836311903},
{75025, 5702887, 24157817, 102334155, 165580141},
{832040, 14930352, 701408733}
MATHEMATICA
f = Fibonacci[Range[0, 1000]]; Table[Select[f, Count[IntegerDigits[#, 2], 0] == n &], {n, 0, 20}]
CROSSREFS
Cf. A004685 (Fibonacci numbers in binary), A214853 (one 0-bit), A222601.
KEYWORD
nonn,tabf
AUTHOR
T. D. Noe, Mar 08 2013
STATUS
approved
Irregular triangle read by rows: row n lists the Fibonacci numbers with exactly n 1's in their binary representation.
+10
5
0, 1, 1, 2, 8, 3, 5, 34, 144, 13, 21
OFFSET
0,4
COMMENTS
Besides those listed in Example section, there are no additional terms with small number of 1's in the first 10^12 Fibonacci numbers. In particular, if A000120(Fibonacci(n)) < 100, then n <= 319 or n > 10^12. - Charles R Greathouse IV, Mar 06 2014
For the theorem about S-units that Noam Elkies quotes (in the MathOverflow link), see Chapter 1 of Storey-Tijdemann, 1986. - N. J. A. Sloane, Jan 28 2017
REFERENCES
T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Mathematics, 1986.
LINKS
Charles Greathouse and Noam D. Elkies, Hamming weight of Fibonacci numbers, MathOverflow, 2014
Charles Greathouse and Noam D. Elkies, Hamming weight of Fibonacci numbers, MathOverflow, 2014 [Cached copy of three screen shots]
David Terr, On the sums of digits of Fibonacci numbers, Fibonacci Quarterly 34, Aug. 1996, pp. 349-355.
EXAMPLE
The irregular table begins
{0},
{1, 1, 2, 8},
{3, 5, 34, 144},
{13, 21, ...}.
It is conjectured that the previous (n=3) row is complete, and that the subsequent rows are:
{89, 610, 2584},
{55, 233, 4181},
{377, 10946, 46368, 75025},
{1597},
{987, 6765, 17711, 832040},
{121393, 2178309},
{39088169},
{28657, 196418, 317811, 1346269, 9227465},
{514229, 5702887, 14930352, 63245986, 4807526976},
{3524578, 2971215073}
...
MATHEMATICA
f = Fibonacci[Range[0, 100]]; Table[Select[f, Total[IntegerDigits[#, 2]] == n &], {n, 0, 20}]
PROG
(PARI) row(n)=my(k=-1, t); while(1, t=fibonacci(k++); if(hammingweight(t)==n, print1(t", "))) \\ Charles R Greathouse IV, Mar 04 2014
CROSSREFS
Cf. A004685 (Fibonacci numbers in binary), A221158 (weight 2), A222295, A222601, A222602, A222757, A222758.
KEYWORD
nonn,base,tabf,more,hard
AUTHOR
T. D. Noe, Feb 22 2013
EXTENSIONS
a(9)-a(10) from Noam D. Elkies, via Charles R Greathouse IV, Mar 04 2014
Truncated to established terms by Max Alekseyev, May 13 2014
Edited by Max Alekseyev, Sep 08 2016
STATUS
approved

Search completed in 0.004 seconds