[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a225007 -id:a225007
     Sort: relevance | references | number | modified | created      Format: long | short | data
Binomial coefficients C(2*n+5,5).
+10
8
1, 21, 126, 462, 1287, 3003, 6188, 11628, 20349, 33649, 53130, 80730, 118755, 169911, 237336, 324632, 435897, 575757, 749398, 962598, 1221759, 1533939, 1906884, 2349060, 2869685, 3478761, 4187106, 5006386, 5949147, 7028847, 8259888, 9657648, 11238513
OFFSET
0,2
COMMENTS
Number of standard tableaux of shape (2n+1,1^5). - Emeric Deutsch, May 30 2004
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000 (terms 0..200 from Vincenzo Librandi)
J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math., Vol. 201, No. 1 (2006), pp. 143-179. [Th. 7.2(i), case a=1]
FORMULA
a(n) = A000389(2*n+5).
G.f.: (1+15*x+15*x^2+x^3)/(1-x)^6 = (1+x)*(x^2+14*x+1)/(1-x)^6.
E.g.f.: (30 + 600*x + 1275*x^2 + 730*x^3 + 140*x^4 + 8*x^5)*exp(x)/30. - G. C. Greubel, Nov 23 2017
Sum_{n>=0} (-1)^n/a(n) = 5*(10/3 - Pi). - Matthieu Pluntz, Oct 08 2019
Sum_{n>=0} 1/a(n) = 40*log(2) - 80/3. - Amiram Eldar, Jan 03 2022
From Peter Bala, Sep 03 2023: (Start)
a(n) = Sum_{0 <= i <= j <= n} (j+1)*(2*i+1)^2.
a(n) = (n+2)*(2*n+5)/(n*(2*n-1))*a(n-1) with a(0) := 1. (End)
a(n) = 2*A225007(n) - A006324(n+1). - Yasser Arath Chavez Reyes, Feb 27 2024
MATHEMATICA
Table[Binomial[2*n + 5, 5], {n, 0, 50}] (* G. C. Greubel, Nov 23 2017 *)
PROG
(Magma) [Binomial(2*n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 07 2011
(PARI) a(n)=n*(8*n^4+60*n^3+170*n^2+225*n+137)/30+1 \\ Charles R Greathouse IV, Apr 18 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Eric Lane
STATUS
approved
Sequences from the quartic oscillator.
+10
1
0, 24, 384, 2064, 7104, 18984, 43008, 86688, 160128, 276408, 451968, 706992, 1065792, 1557192, 2214912, 3077952, 4190976, 5604696, 7376256, 9569616, 12255936, 15513960, 19430400, 24100320, 29627520, 36124920, 43714944, 52529904, 62712384, 74415624, 87803904
OFFSET
-1,2
COMMENTS
There are 50 polynomials from the sequences which can be summed to a solution of the quartic oscillator.
FORMULA
a(n) = (n+1)*(n+2)*(n+3)*(4+44*n/5+16*n^2/5).
G.f.: 24*x*(1+10*x+5*x^2) / (x-1)^6. - R. J. Mathar, Oct 24 2013
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Wesley Ivan Hurt, Oct 24 2014
MAPLE
A228406:=n->(n+1)*(n+2)*(n+3)*(4+44*n/5+16*n^2/5): seq(A228406(n), n=-1..30); # Wesley Ivan Hurt, Oct 24 2014
MATHEMATICA
CoefficientList[Series[24*x*(1 + 10*x + 5*x^2)/(x - 1)^6, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 24 2014 *)
PROG
(Magma) [(n+1)*(n+2)*(n+3)*(4+44*n/5+16*n^2/5) : n in [-1..30]]; // Wesley Ivan Hurt, Oct 24 2014
CROSSREFS
Cf. A225007.
KEYWORD
nonn,easy
AUTHOR
Charles A. Lane, Aug 22 2013
STATUS
approved

Search completed in 0.018 seconds