[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a212596 -id:a212596
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of business cards required to build an origami level n Mosely snowflake sponge.
+10
1
12, 168, 2784, 48912, 874416, 15709488, 282620784, 5086424112, 91551884016, 1647915162288, 29662379171184, 533922356331312, 9610600070213616, 172990789545095088, 3113834153217961584, 56049014464954558512, 1008882258904338303216, 18159880652953870707888
OFFSET
0,1
REFERENCES
Thomas Hull, Project Origami: Activities for Exploring Mathematics, A K Peters/CRC Press, 2006.
FORMULA
a(n) = (108*18^n + 48*5^n)/13.
a(n) = 18*a(n-1) - 48*5^(n - 1);
a(n) = 23*a(n-1) - 90*a(n-2), with a(0) = 12 and a(1) = 168.
G.f.: - 12*(9*x - 1)/((5*x - 1)*(18*x - 1)).
E.g.f.: (108*exp(18*x) + 48*exp(5*x))/13.
EXAMPLE
a(1) = 168 because 108 business cards are needed for the squeleton and 60 more for the panels (see guide in links).
MAPLE
seq((108*18^n + 48*5^n)/13, n = 0 .. 50);
MATHEMATICA
LinearRecurrence[{23, -90}, {12, 168}, 50]
PROG
(Maxima) makelist((108*18^n + 48*5^n)/13, n, 0, 50);
CROSSREFS
Cf. A212596 (Origami Menger sponge).
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
Number of business cards required to build an origami level n Jerusalem cube.
+10
0
12, 72, 672, 6048, 55488, 511872, 4738560, 43943424, 407890944, 3787941888, 35186122752, 326885842944, 3037038034944, 28217571901440, 262178452930560, 2436006721486848, 22634041833160704, 210303674768424960, 1954034324430913536, 18155901427591938048
OFFSET
0,1
COMMENTS
The actual Jerusalem cube fractal cannot be built using a simple integer grid. However, one can create an approximate one by choosing the cube side length to be a Pell number (see link).
In practice, the first two terms represent the level 0 because they both consist of cubes (1 X 1 X 1 and 2 X 2 X 2, respectively). The "cross" shape appears at index 2, which is usually considered as the first iteration (for example, the "hole" shape in the Menger Sponge is visible at level 1).
The limit of a(n+1)/a(n) is equal to 2*(2+sqrt(7)) as n approaches infinity.
REFERENCES
Eric Baird, L'art fractal, Tangente 150 (2013), 45.
Thomas Hull, Project Origami: Activities for Exploring Mathematics, A K Peters/CRC Press, 2006.
LINKS
FORMULA
a(n) = (3/14)*(7*(2 - 2*sqrt(2))^n + 7*(2 + 2*sqrt(2))^n + (21 - 5*sqrt(7))*(4 - 2*sqrt(7))^n + (21 + 5*sqrt(7))*(4 + 2*sqrt(7))^n).
a(n) = 12*a(n-1) - 16*a(n-2) - 80*a(n-3) - 48*a(n-4), n > 4.
G.f.: 12*(1 - 6*x + 8*x^3)/((1-4*x-4*x^2)*(1-8*x-12*x^2)) .
E.g.f.: (3/14)*(7*exp((2 - 2*sqrt(2))*x) + 7*exp((2 + 2*sqrt(2))*x) + (21 - 5*sqrt(7))*exp((4 - 2*sqrt(7))*x) + (21 + 5*sqrt(7))*exp((4 + 2*sqrt(7))*x)).
a(n) = 3*( A084128(n) -2*A239549(n) +3*A239549(n+1) ). - R. J. Mathar, Mar 06 2022
EXAMPLE
a(2) = 672 because 456 business cards are needed for the squeleton and 216 more for the panels.
MATHEMATICA
LinearRecurrence[{12, -16, -80, -48}, {12, 72, 672, 6048}, 20]
PROG
(Maxima) makelist((3/14)*(7*(2 - 2*sqrt(2))^n + 7*(2 + 2*sqrt(2))^n + (21 - 5*sqrt(7))*(4 - 2*sqrt(7))^n + (21 + 5*sqrt(7))*(4 + 2*sqrt(7))^n), n, 0, 20), ratsimp;
CROSSREFS
At the n-th level, the cube side length is A000129(n+1), the squeleton requires 6*A239549(n+1) business cards, and each face requires A057087(n) units for the panels.
Cf. A212596 (Origami Menger sponge), A304960 (Origami Mosely snowflake sponge).
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Search completed in 0.007 seconds