[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a193652 -id:a193652
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers of the form 2^n or 3*2^n.
+10
110
1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304
OFFSET
1,2
COMMENTS
This entry is a list, and so has offset 1. WARNING: However, in this entry several comments, formulas and programs seem to refer to the original version of this sequence which had offset 0. - M. F. Hasler, Oct 06 2014
Number of necklaces with n-1 beads and two colors that are the same when turned over and hence have reflection symmetry. [edited by Herbert Kociemba, Nov 24 2016]
The subset {a(1),...,a(2k)} contains all proper divisors of 3*2^k. - Ralf Stephan, Jun 02 2003
Let k = any nonnegative integer and j = 0 or 1. Then n+1 = 2k + 3j and a(n) = 2^k*3^j. - Andras Erszegi (erszegi.andras(AT)chello.hu), Jul 30 2005
Smallest number having no fewer prime factors than any predecessor, a(0)=1; A110654(n) = A001222(a(n)); complement of A116451. - Reinhard Zumkeller, Feb 16 2006
A093873(a(n)) = 1. - Reinhard Zumkeller, Oct 13 2006
a(n) = a(n-1) + a(n-2) - gcd(a(n-1), a(n-2)), n >= 3, a(1)=2, a(2)=3. - Ctibor O. Zizka, Jun 06 2009
Where records occur in A048985: A193652(n) = A048985(a(n)) and A193652(n) < A048985(m) for m < a(n). - Reinhard Zumkeller, Aug 08 2011
A002348(a(n)) = A000079(n-3) for n > 2. - Reinhard Zumkeller, Mar 18 2012
Without initial 1, third row in array A228405. - Richard R. Forberg, Sep 06 2013
Also positions of records in A048673. A246360 gives the record values. - Antti Karttunen, Sep 23 2014
Known in numerical mathematics as "Bulirsch sequence", used in various extrapolation methods for step size control. - Peter Luschny, Oct 30 2019
For n > 1, squares of the terms can be expressed as the sum of two powers of two: 2^x + 2^y. - Karl-Heinz Hofmann, Sep 08 2022
LINKS
Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 11, 22.
Michael De Vlieger, Thomas Scheuerle, Rémy Sigrist, N. J. A. Sloane, and Walter Trump, The Binary Two-Up Sequence, arXiv:2209.04108 [math.CO], Sep 11 2022.
David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
John P. McSorley and Alan H. Schoen, Rhombic tilings of (n,k)-ovals, (n, k, lambda)-cyclic difference sets, and related topics, Discrete Math., 313 (2013), 129-154. - From N. J. A. Sloane, Nov 26 2012
FORMULA
a(n) = 2*A000029(n) - A000031(n).
For n > 2, a(n) = 2*a(n - 2); for n > 3, a(n) = a(n - 1)*a(n - 2)/a(n - 3). G.f.: (1 + x)^2/(1 - 2*x^2). - Henry Bottomley, Jul 15 2001, corrected May 04 2007
a(0)=1, a(1)=1 and a(n) = a(n-2) * ( floor(a(n-1)/a(n-2)) + 1 ). - Benoit Cloitre, Aug 13 2002
(3/4 + sqrt(1/2))*sqrt(2)^n + (3/4 - sqrt(1/2))*(-sqrt(2))^n. a(0)=1, a(2n) = a(n-1)*a(n), a(2n+1) = a(n) + 2^floor((n-1)/2). - Ralf Stephan, Apr 16 2003 [Seems to refer to the original version with offset=0. - M. F. Hasler, Oct 06 2014]
Binomial transform is A048739. - Paul Barry, Apr 23 2004
E.g.f.: (cosh(x/sqrt(2)) + sqrt(2)sinh(x/sqrt(2)))^2.
a(1) = 1; a(n+1) = a(n) + A000010(a(n)). - Stefan Steinerberger, Dec 20 2007
u(2)=1, v(2)=1, u(n)=2*v(n-1), v(n)=u(n-1), a(n)=u(n)+v(n). - Jaume Oliver Lafont, May 21 2008
For n => 3, a(n) = sqrt(2*a(n-1)^2 + (-2)^(n-3)). - Richard R. Forberg, Aug 20 2013
a(n) = A064216(A246360(n)). - Antti Karttunen, Sep 23 2014
a(n) = sqrt((17 - (-1)^n)*2^(n-4)) for n >= 2. - Anton Zakharov, Jul 24 2016
Sum_{n>=1} 1/a(n) = 8/3. - Amiram Eldar, Nov 12 2020
a(n) = 2^(n/2) if n is even. a(n) = 3 * 2^((n-3)/2) if n is odd and for n>1. - Karl-Heinz Hofmann, Sep 08 2022
MAPLE
1, seq(op([2^i, 3*2^(i-1)]), i=1..100); # Robert Israel, Sep 23 2014
MATHEMATICA
CoefficientList[Series[(-x^2 - 2*x - 1)/(2*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
Function[w, DeleteCases[Union@ Flatten@ w, k_ /; k > Max@ First@ w]]@ TensorProduct[{1, 3}, 2^Range[0, 22]] (* Michael De Vlieger, Nov 24 2016 *)
LinearRecurrence[{0, 2}, {1, 2, 3}, 50] (* Harvey P. Dale, Jul 04 2017 *)
PROG
(PARI) a(n)=if(n%2, 3/2, 2)<<((n-1)\2)\1
(Haskell)
a029744 n = a029744_list !! (n-1)
a029744_list = 1 : iterate
(\x -> if x `mod` 3 == 0 then 4 * x `div` 3 else 3 * x `div` 2) 2
-- Reinhard Zumkeller, Mar 18 2012
(Scheme) (define (A029744 n) (cond ((<= n 1) n) ((even? n) (expt 2 (/ n 2))) (else (* 3 (expt 2 (/ (- n 3) 2)))))) ;; Antti Karttunen, Sep 23 2014
(Python)
def A029744(n):
if n == 1: return 1
elif n % 2 == 0: return 2**(n//2)
else: return 3 * 2**((n-3)//2) # Karl-Heinz Hofmann, Sep 08 2022
CROSSREFS
Cf. A056493, A038754, A063759. Union of A000079 and A007283.
First differences are in A016116(n-1).
Row sums of the triangle in sequence A119963. - John P. McSorley, Aug 31 2010
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent. There may be minor differences from (s(n)) at the start, and a shift of indices. A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A060482 (s(n)-3); A136252 (s(n)-3); A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A354785 (3*s(n)), A061776 (3*s(n)-6); A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022
KEYWORD
nonn,easy
EXTENSIONS
Corrected and extended by Joe Keane (jgk(AT)jgk.org), Feb 20 2000
STATUS
approved
a(n) = (2^(2*n + 1) + 1)/3.
(Formerly M2895)
+10
103
1, 3, 11, 43, 171, 683, 2731, 10923, 43691, 174763, 699051, 2796203, 11184811, 44739243, 178956971, 715827883, 2863311531, 11453246123, 45812984491, 183251937963, 733007751851, 2932031007403, 11728124029611, 46912496118443, 187649984473771, 750599937895083
OFFSET
0,2
COMMENTS
Let u(k), v(k), w(k) be the 3 sequences defined by u(1)=1, v(1)=0, w(1)=0 and u(k+1)=u(k)+v(k)-w(k), v(k+1)=u(k)-v(k)+w(k), w(k+1)=-u(k)+v(k)+w(k); let M(k)=Max(u(k),v(k),w(k)); then a(n)=M(2n)=M(2n-1). - Benoit Cloitre, Mar 25 2002
Also the number of words of length 2n generated by the two letters s and t that reduce to the identity 1 by using the relations ssssss=1, tt=1 and stst=1. The generators s and t along with the three relations generate the dihedral group D6=C2xD3. - Jamaine Paddyfoot (jay_paddyfoot(AT)hotmail.com) and John W. Layman, Jul 08 2002
Binomial transform of A025192. - Paul Barry, Apr 11 2003
Number of walks of length 2n+1 between two adjacent vertices in the cycle graph C_6. Example: a(1)=3 because in the cycle ABCDEF we have three walks of length 3 between A and B: ABAB, ABCB and AFAB. - Emeric Deutsch, Apr 01 2004
Numbers of the form 1 + Sum_{i=1..m} 2^(2*i-1). - Artur Jasinski, Feb 09 2007
Prime numbers of the form 1+Sum[2^(2n-1)] are in A000979. Numbers x such that 1+Sum[2^(2n-1)] is prime for n=1,2,...,x is A127936. - Artur Jasinski, Feb 09 2007
Related to A024493(6n+1), A131708(6n+3), A024495(6n+5). - Paul Curtz, Mar 27 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-6, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)*charpoly(A,2). - Milan Janjic, Feb 21 2010
Number of toothpicks in the toothpick structure of A139250 after 2^n stages. - Omar E. Pol, Feb 28 2011
Numbers whose binary representation is "10" repeated (n-1) times with "11" appended on the end, n >= 1. For example 171 = 10101011 (2). - Omar E. Pol, Nov 22 2012
a(n) is the smallest number for which A072219(a(n)) = 2*n+1. - Ramasamy Chandramouli, Dec 22 2012
An Engel expansion of 2 to the base b := 4/3 as defined in A181565, with the associated series expansion 2 = b + b^2/3 + b^3/(3*11) + b^4/(3*11*43) + .... Cf. A007051. - Peter Bala, Oct 29 2013
The positive integer solution (x,y) of 3*x - 2^n*y = 1, n>=0, with smallest x is (a(n/2), 2) if n is even and (a((n-1)/2), 1) if n is odd. - Wolfdieter Lang, Feb 15 2014
The smallest positive number that requires at least n additions and subtractions of powers of 2 to be formed. See Puzzling StackExchange link. - Alexander Cooke Jul 16 2023
REFERENCES
H. W. Gould, Combinatorial Identities, Morgantown, 1972, (1.77), page 10.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
Cecilia Bebeacua, Toufik Mansour, Alexander Postnikov, Simone Severini, On the X-rays of permutations, arXiv:math/0506334 [math.CO], 2005.
Greg Bell, Austin Lawson, Neil Pritchard, and Dan Yasaki, On locally infinite Cayley graphs of the integers, arXiv preprint arXiv:1711.00809 [math.GT], 2017. See lambda_2.
Phillip G. Bradford, Efficient Exact Paths For Dyck and semi-Dyck Labeled Path Reachability, arXiv:1802.05239 [cs.DS], 2018.
John R. Britnell and Mark Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in types A, B and D, arXiv:1507.04803 [math.CO], 2015.
Ernesto Estrada and José A. de la Pena, From Integer Sequences to Block Designs via Counting Walks in Graphs, arXiv preprint arXiv:1302.1176 [math.CO], 2013.
Ernesto Estrada and José A. de la Pena, Integer sequences from walks in graphs, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, No. 3, 78-84.
Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 35.
Sungpyo Hong and Jin Ho Kwak, Regular fourfold coverings with respect to the identity automorphism, J. Graph Theory, 17 (1993), 621-627.
Dmitry Kamenetsky, A magic grasshopper, Puzzling StackExchange, 2023.
Wolfdieter Lang, On Collatz' Words, Sequences and Trees, arXiv preprint arXiv:1404.2710 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.11.7.
Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Vol. 19 (2016), Article 16.3.1.
Eric Weisstein's World of Mathematics, Repunit
FORMULA
a(n) = 2*A002450(n) + 1.
From Wolfdieter Lang, Apr 24 2001: (Start)
a(n) = Sum_{m = 0..n} A060920(n, m) = A002450(n+1) - 2*A002450(n).
G.f.: (1-2*x)/(1-5*x+4*x^2). (End)
a(n) = Sum_{k = 0..n} binomial(n+k, 2*k)/2^(k - n).
a(n) = 4*a(n-1) - 1, n > 0.
From Paul Barry, Mar 17 2003: (Start)
a(n) = 1 + 2*Sum_{k = 0..n-1} 4^k;
a(n) = A001045(2n+1). (End)
a(n) = A020988(n-1) + 1 = A039301(n+1) - 1 = A083584(n-1) + 2. - Ralf Stephan, Jun 14 2003
a(0) = 1; a(n+1) = a(n) * 4 - 1. - Regis Decamps (decamps(AT)users.sf.net), Feb 04 2004 (correction to lead index by K. Spage, Aug 20 2014)
a(n) = Sum_{i + j + k = n; 0 <= i, j, k <= n} (n+k)!/i!/j!/(2*k)!. - Benoit Cloitre, Mar 25 2004
a(n) = 5*a(n-1) - 4*a(n-2). - Emeric Deutsch, Apr 01 2004
a(n) = 4^n - A001045(2*n). - Paul Barry, Apr 17 2004
a(n) = 2*(A001045(n))^2 + (A001045(n+1))^2. - Paul Barry, Jul 15 2004
a(n) = left and right terms in M^n * [1 1 1] where M = the 3X3 matrix [1 1 1 / 1 3 1 / 1 1 1]. M^n * [1 1 1] = [a(n) A002450(n+1) a(n)] E.g. a(3) = 43 since M^n * [1 1 1] = [43 85 43] = [a(3) A002450(4) a(3)]. - Gary W. Adamson, Dec 18 2004
a(n) = A072197(n) - A020988(n). - Creighton Dement, Dec 31 2004
a(n) = A139250(2^n). - Omar E. Pol, Feb 28 2011
a(n) = A193652(2*n+1). - Reinhard Zumkeller, Aug 08 2011
a(n) = Sum_{k = -floor(n/3)..floor(n/3)} binomial(2*n, n+3*k)/2. - Mircea Merca, Jan 28 2012
a(n) = 2^(2*(n+1)) - A072197(n). - Vladimir Pletser, Apr 12 2014
a(n) == 2*n + 1 (mod 3). Indeed, from Regis Decamps' formula (Feb 04 2004) we have a(i+1) - a(i) == -1 (mod 3), i= 0, 1, ..., n - 1. Summing, we have a(n) - 1 == -n (mod 3), and the formula follows. - Vladimir Shevelev, May 13, 20 2015
For n > 0 a(n) = A133494(0) + 2 * (A133494(n) + Sum_{x = 1..n - 1}Sum_{k = 0..x - 1}(binomial(x - 1, k)*(A133494(k+1) + A133494(n-x+k)))). - J. Conrad, Dec 06 2015
a(n) = Sum_{k = 0..2n} (-2)^k == 1 + Sum_{k = 1..n} 2^(2k-1). - Bob Selcoe, Aug 21 2016
E.g.f.: (1 + 2*exp(3*x))*exp(x)/3. - Ilya Gutkovskiy, Aug 21 2016
MAPLE
a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-1 od: seq(a[n], n=0..23); # Zerinvary Lajos, Feb 22 2008, with correction by K. Spage, Aug 20 2014
A007583 := proc(n)
(2^(2*n+1)+1)/3 ;
end proc: # R. J. Mathar, Feb 19 2015
MATHEMATICA
(* From Michael De Vlieger, Aug 22 2016 *)
Table[(2^(2n+1) + 1)/3, {n, 0, 23}]
Table[1 + 2Sum[4^k, {k, 0, n-1}], {n, 0, 23}]
NestList[4# -1 &, 1, 23]
Table[Sum[Binomial[n+k, 2k]/2^(k-n), {k, 0, n}], {n, 0, 23}]
CoefficientList[Series[(1-2x)/(1-5x+4x^2), {x, 0, 23}], x] (* End *)
PROG
(PARI) a(n)=sum(k=-n\3, n\3, binomial(2*n+1, n+1+3*k))
(PARI) a=1; for(n=1, 23, print1(a, ", "); a=bitor(a, 3*a)) \\ K. Spage, Aug 20 2014
(PARI) Vec((1-2*x)/(1-5*x+4*x^2) + O(x^30)) \\ Altug Alkan, Dec 08 2015
(PARI) apply( {A007583(n)=2<<(2*n)\/3}, [0..25]) \\ M. F. Hasler, Nov 30 2021
(Magma) [(2^(2*n+1) + 1)/3: n in [0..30] ]; // Vincenzo Librandi, Apr 28 2011
(Haskell)
a007583 = (`div` 3) . (+ 1) . a004171
-- Reinhard Zumkeller, Jan 09 2013
(Sage) [(2^(2*n+1) + 1)/3 for n in (0..25)] # G. C. Greubel, Dec 25 2019
(GAP) List([0..25], n-> (2^(2*n+1) + 1)/3); # G. C. Greubel, Dec 25 2019
CROSSREFS
Cf. also A006054, A006356, A005578.
Partial sums of A081294.
Cf. location of records in A007302.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
a(n) = (2/3)*(4^n-1).
+10
74
0, 2, 10, 42, 170, 682, 2730, 10922, 43690, 174762, 699050, 2796202, 11184810, 44739242, 178956970, 715827882, 2863311530, 11453246122, 45812984490, 183251937962, 733007751850, 2932031007402, 11728124029610, 46912496118442, 187649984473770, 750599937895082
OFFSET
0,2
COMMENTS
Numbers whose binary representation is 10, n times (see A163662(n) for n >= 1). - Alexandre Wajnberg, May 31 2005
Numbers whose base-4 representation consists entirely of 2's; twice base-4 repunits. - Franklin T. Adams-Watters, Mar 29 2006
Expected time to finish a random Tower of Hanoi problem with 2n disks using optimal moves, so (since 2n is even and A010684(2n) = 1) a(n) = A060590(2n). - Henry Bottomley, Apr 05 2001
a(n) is the number of derangements of [2n + 3] with runs consisting of consecutive integers. E.g., a(1) = 10 because the derangements of {1, 2, 3, 4, 5} with runs consisting of consecutive integers are 5|1234, 45|123, 345|12, 2345|1, 5|4|123, 5|34|12, 45|23|1, 345|2|1, 5|4|23|1, 5|34|2|1 (the bars delimit the runs). - Emeric Deutsch, May 26 2003
For n > 0, also smallest numbers having in binary representation exactly n + 1 maximal groups of consecutive zeros: A087120(n) = a(n-1), see A087116. - Reinhard Zumkeller, Aug 14 2003
Number of walks of length 2n + 3 between any two diametrically opposite vertices of the cycle graph C_6. Example: a(0) = 2 because in the cycle ABCDEF we have two walks of length 3 between A and D: ABCD and AFED. - Emeric Deutsch, Apr 01 2004
From Paul Barry, May 18 2003: (Start)
Row sums of triangle using cumulative sums of odd-indexed rows of Pascal's triangle (start with zeros for completeness):
0 0
1 1
1 4 4 1
1 6 14 14 6 1
1 8 27 49 49 27 8 1 (End)
a(n) gives the position of the n-th zero in A173732, i.e., A173732(a(n)) = 0 for all n and this gives all the zeros in A173732. - Howard A. Landman, Mar 14 2010
Smallest number having alternating bit sum -n. Cf. A065359. For n = 0, 1, ..., the last digit of a(n) is 0, 2, 0, 2, ... . - Washington Bomfim, Jan 22 2011
Number of toothpicks minus 1 in the toothpick structure of A139250 after 2^n stages. - Omar E. Pol, Mar 15 2012
For n > 0 also partial sums of the odd powers of 2 (A004171). - K. G. Stier, Nov 04 2013
Values of m such that binomial(4*m + 2, m) is odd. Cf. A002450. - Peter Bala, Oct 06 2015
For a(n) > 2, values of m such that m is two steps away from a power of 2 under the Collatz iteration. - Roderick MacPhee, Nov 10 2016
a(n) is the position of the first occurrence of 2^(n+1)-1 in A020986. See the Brillhart and Morton link, pp. 856-857. - John Keith, Jan 12 2021
a(n) is the number of monotone paths in the n-dimensional cross-polytope for a generic linear orientation. See the Black and De Loera link. - Alexander E. Black, Feb 15 2023
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..170 from Vincenzo Librandi)
Andrei Asinowski, Cyril Banderier, and Benjamin Hackl, On extremal cases of pop-stack sorting, Permutation Patterns (Zürich, Switzerland, 2019) [link is not very stable].
Andrei Asinowski, Cyril Banderier, and Benjamin Hackl, Flip-sort and combinatorial aspects of pop-stack sorting, arXiv:2003.04912 [math.CO], 2020.
Alexander E. Black, Monotone Paths on Polytopes: Combinatorics and Optimization, Ph. D. Dissertation, Univ. Calif. Davis (2024). See p. 59.
Alexander Black and Jesús De Loera, Monotone paths on cross-polytopes, arXiv:2102.01237 [math.CO], Feb 2021
John Brillhart and Peter Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869.
Nobushige Kurokawa, Zeta functions over F_1, Proc. Japan Acad., 81, Ser. A (2005), 180-184. See Theorem 3 (3).
Andrei K. Svinin, Tuenter polynomials and a Catalan triangle, arXiv:1603.05748 [math.CO], 2016. See p.3.
FORMULA
a(n) = 4*a(n-1) + 2, a(0) = 0.
a(n) = A026644(2*n).
a(n) = A007583(n) - 1 = A039301(n+1) - 2 = A083584(n-1) + 1.
E.g.f. : (2/3)*(exp(4*x)-exp(x)). - Paul Barry, May 18 2003
a(n) = A007583(n+1) - 1 = A039301(n+2) - 2 = A083584(n) + 1. - Ralf Stephan, Jun 14 2003
G.f.: 2*x/((1-x)*(1-4*x)). - R. J. Mathar, Sep 17 2008
a(n) = a(n-1) + 2^(2n-1), a(0) = 0. - Washington Bomfim, Jan 22 2011
a(n) = A193652(2*n). - Reinhard Zumkeller, Aug 08 2011
a(n) = 5*a(n-1) - 4*a(n-2) (n > 1), a(0) = 0, a(1) = 2. - L. Edson Jeffery, Mar 02 2012
a(n) = (2/3)*A024036(n). - Omar E. Pol, Mar 15 2012
a(n) = 2*A002450(n). - Yosu Yurramendi, Jan 24 2017
From Seiichi Manyama, Nov 24 2017: (Start)
Zeta_{GL(2)/F_1}(s) = Product_{k = 1..4} (s-k)^(-b(2,k)), where Sum b(2,k)*t^k = t*(t-1)*(t^2-1). That is Zeta_{GL(2)/F_1}(s) = (s-3)*(s-2)/((s-4)*(s-1)).
Zeta_{GL(2)/F_1}(s) = Product_{n > 0} (1 - (1/s)^n)^(-A295521(n)) = Product_{n > 0} (1 - x^n)^(-A295521(n)) = (1-3*x)*(1-2*x)/((1-4*x)*(1-x)) = 1 + Sum_{k > 0} a(k-1)*x^k (x=1/s). (End)
From Oboifeng Dira, May 29 2020: (Start)
a(n) = A078008(2n+1) (second bisection).
a(n) = Sum_{k=0..n} binomial(2n+1, ((n+2) mod 3)+3k). (End)
MAPLE
A020988 := proc(n)
2*(4^n-1)/3 ;
end proc: # R. J. Mathar, Feb 19 2015
MATHEMATICA
(2(4^Range[0, 30] - 1))/3 (* or *) LinearRecurrence[{5, -4}, {0, 2}, 30] (* Harvey P. Dale, Sep 25 2013 *)
PROG
(Magma) [(2/3)*(4^n-1): n in [0..40] ]; // Vincenzo Librandi, Apr 28 2011
(PARI) vector(100, n, n--; (2/3)*(4^n-1)) \\ Altug Alkan, Oct 06 2015
(PARI) Vec(2*z/((1-z)*(1-4*z)) + O(z^30)) \\ Altug Alkan, Oct 11 2015
(Scala) (((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)(_ * _)).map(2 * _)).scanLeft(0: BigInt)(_ + _) // Alonso del Arte, Sep 12 2019
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Edited by N. J. A. Sloane, Sep 06 2006
STATUS
approved
Working in base 2, replace n with the concatenation of its prime divisors in increasing order (write answer in base 10).
+10
10
1, 2, 3, 10, 5, 11, 7, 42, 15, 21, 11, 43, 13, 23, 29, 170, 17, 47, 19, 85, 31, 43, 23, 171, 45, 45, 63, 87, 29, 93, 31, 682, 59, 81, 47, 175, 37, 83, 61, 341, 41, 95, 43, 171, 125, 87, 47, 683, 63, 173, 113, 173, 53, 191, 91, 343, 115, 93, 59, 349, 61, 95, 127, 2730
OFFSET
1,2
LINKS
Patrick De Geest, Home Primes
EXAMPLE
15 = 3*5 -> 11.101 -> 11101 = 29, so a(15) = 29.
MATHEMATICA
f[n_] := FromDigits[ Flatten[ IntegerDigits[ Flatten[ Table[ #1, {#2}] & @@@ FactorInteger@n], 2]], 2]; Array[f, 64] (* Robert G. Wilson v, Jun 02 2010 *)
PROG
(Haskell)
-- import Data.List (unfoldr)
a048985 = foldr (\d v -> 2 * v + d) 0 . concatMap
(unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2))
. reverse . a027746_row
-- Reinhard Zumkeller, Jul 16 2012
(Python)
from sympy import factorint
def a(n):
if n == 1: return 1
return int("".join(bin(p)[2:]*e for p, e in factorint(n).items()), 2)
print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Oct 07 2022
CROSSREFS
Cf. A193652, A029744 (record values and where they occur).
Cf. A027746.
KEYWORD
nonn,easy,nice,base,look
EXTENSIONS
More terms from Sam Alexander (pink2001x(AT)hotmail.com) and Michel ten Voorde
STATUS
approved
a(1) = 1, then A007051 ((3^n)+1)/2 interleaved with A057198 (5*3^(n-1)+1)/2.
+10
10
1, 2, 3, 5, 8, 14, 23, 41, 68, 122, 203, 365, 608, 1094, 1823, 3281, 5468, 9842, 16403, 29525, 49208, 88574, 147623, 265721, 442868, 797162, 1328603, 2391485, 3985808, 7174454, 11957423, 21523361, 35872268, 64570082, 107616803, 193710245, 322850408, 581130734
OFFSET
1,2
COMMENTS
Also record values in A048673.
FORMULA
a(1) = 1, a(2n) = (3^n+1)/2, a(2n+1) = (5 * 3^(n-1)+1)/2.
a(n) = A048673(A029744(n)).
a(n) = A087503(n-3) + 2 for n >= 3. - Peter Kagey, Nov 30 2019
G.f.: x -x^2*(-2-x+4*x^2) / ( (x-1)*(3*x^2-1) ). - R. J. Mathar, Sep 23 2014
MATHEMATICA
LinearRecurrence[{1, 3, -3}, {1, 2, 3, 5}, 40] (* Hugo Pfoertner, Sep 27 2022 *)
PROG
(Scheme)
(define (A246360 n) (cond ((<= n 1) n) ((even? n) (/ (+ 1 (A000244 (/ n 2))) 2)) (else (/ (+ 1 (* 5 (A000244 (/ (- n 3) 2)))) 2))))
CROSSREFS
Even bisection: A007051 from A007051(1) onward: [2, 5, 14, 41, ...]
Odd bisection: 1 followed by A057198.
A029744 gives the corresponding record positions in A048673.
A247284 gives the maximum values of A048673 between these records and A247283 gives the positions where they occur.
Subsequence of A246361.
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Aug 24 2014
STATUS
approved
Nonnegative values in A317050, in order of appearance.
+10
3
0, 1, 2, 3, 5, 4, 8, 9, 7, 6, 10, 11, 13, 12, 20, 21, 19, 18, 14, 15, 17, 16, 32, 33, 31, 30, 34, 35, 37, 36, 28, 29, 27, 26, 22, 23, 25, 24, 40, 41, 39, 38, 42, 43, 45, 44, 52, 53, 51, 50, 46, 47, 49, 48, 80, 81, 79, 78, 82, 83, 85, 84, 76, 77, 75, 74, 70, 71
OFFSET
0,3
COMMENTS
This sequence is a permutation of the nonnegative integers, with inverse A338253 (the offset has been set to 0 so as to have a permutation).
FORMULA
a(0) = 0.
a(n) = A317050(A053738(n)) for any n > 0.
a(n) = n iff n belongs to A193652.
EXAMPLE
A338251 = 0, 1, -1, -2, 2, 3, 5, 4, -4, -3, -5, -6, -10, -9, -7, -8, 8, ...
We keep: 0, 1, 2, 3, 5, 4, 8, ...
PROG
(PARI) A317050(n) = fromdigits(binary(bitxor(n, n>>1)), -2)
print (select(v -> v>=0, apply(A317050, [0..109])))
CROSSREFS
See A338245 and A338248 for similar sequences.
KEYWORD
nonn,look,base
AUTHOR
Rémy Sigrist, Oct 18 2020
STATUS
approved

Search completed in 0.081 seconds