[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a180628 -id:a180628
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that 2*k! - 1 is prime.
+10
11
2, 3, 4, 5, 6, 7, 14, 15, 17, 22, 28, 91, 253, 257, 298, 659, 832, 866, 1849, 2495, 2716, 2773, 2831, 3364, 5264, 7429, 28539, 32123, 37868
OFFSET
1,1
EXAMPLE
k = 5 is here because 2*5! - 1 = 239 is prime.
MATHEMATICA
Select[Range[8000], PrimeQ[2 #! - 1] &] (* Vincenzo Librandi, Feb 20 2015 *)
PROG
(Magma) [n: n in [1..600] | IsPrime(2*Factorial(n)-1)]; // Vincenzo Librandi, Feb 20 2015
(PARI) is(k) = ispseudoprime(2*k!-1); \\ Jinyuan Wang, Feb 04 2020
KEYWORD
nonn,more
AUTHOR
Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 30 2002
EXTENSIONS
a(24)-a(29) from Serge Batalov, Feb 18 2015
STATUS
approved
Numbers k such that 3*k! - 1 is prime.
+10
11
0, 1, 2, 3, 4, 5, 9, 12, 17, 26, 76, 379, 438, 1695, 6709, 13313, 18504, 19021, 24488, 45552, 49085
OFFSET
1,3
COMMENTS
a(22) > 50000. - Roger Karpin, Nov 13 2016
EXAMPLE
k = 5 is here because 3*5! - 1 = 359 is prime.
MAPLE
for n from 0 to 1000 do if isprime(3*n! - 1) then print(n) end if end do;
MATHEMATICA
Select[Range[0, 10^3], PrimeQ[3 #! - 1] &] (* Robert Price, May 27 2019 *)
PROG
(PARI) isok(n) = isprime(3*n! - 1); \\ Michel Marcus, Nov 13 2016
(PFGW) ABC2 3*$a!+1
a: from 1 to 1000 // Jinyuan Wang, Feb 04 2020
KEYWORD
nonn,more
AUTHOR
Phillip L. Poplin (plpoplin(AT)bellsouth.net), Oct 30 2002
EXTENSIONS
a(15)-a(21) from Roger Karpin, Nov 13 2016
STATUS
approved
Numbers k such that 4*k! - 1 is prime.
+10
11
0, 1, 2, 3, 5, 6, 10, 11, 51, 63, 197, 313, 579, 1264, 2276, 2669, 4316, 4382, 4678, 7907, 10843
OFFSET
1,3
COMMENTS
a(19) > 4570. - Jinyuan Wang, Feb 04 2020
EXAMPLE
k = 5 is here because 4*5! - 1 = 479 is prime.
MAPLE
for n from 0 to 1000 do if isprime(4*n! - 1) then print(n) end if end do;
MATHEMATICA
For[n = 0, True, n++, If[PrimeQ[4 n! - 1], Print[n]]] (* Jean-François Alcover, Sep 23 2015 *)
PROG
(PARI) is_A099350(n)=ispseudoprime(n!*4-1) \\ M. F. Hasler, Sep 20 2015
KEYWORD
nonn,hard,more
AUTHOR
Brian Kell, Oct 12 2004
EXTENSIONS
a(14) from Alois P. Heinz, Sep 21 2015
a(15)-a(16) from Jean-François Alcover, Sep 23 2015
a(17)-a(18) from Jinyuan Wang, Feb 04 2020
a(19) from Michael S. Branicky, May 16 2023
a(20)-a(21) from Michael S. Branicky, Jul 11 2024
STATUS
approved
Numbers k such that 5*k! - 1 is prime.
+10
10
3, 5, 8, 13, 20, 25, 51, 97, 101, 241, 266, 521, 1279, 1750, 2204, 2473, 4193, 5181, 10080
OFFSET
1,1
COMMENTS
a(15) > 1879. - Jinyuan Wang, Feb 04 2020
a(17) > 3500. - Michael S. Branicky, Mar 06 2021
EXAMPLE
k = 5 is here because 5*5! - 1 = 599 is prime.
MAPLE
for n from 0 to 1000 do if isprime(5*n! - 1) then print(n) end if end do;
MATHEMATICA
Select[Range[550], PrimeQ[5#!-1]&] (* Harvey P. Dale, Nov 27 2013 *)
PROG
(PARI) is(n)=ispseudoprime(5*n!-1) \\ Charles R Greathouse IV, Jun 13 2017
(Python)
from sympy import isprime
from math import factorial
print([k for k in range(300) if isprime(5*factorial(k) - 1)]) # Michael S. Branicky, Mar 05 2021
KEYWORD
nonn,more
AUTHOR
Brian Kell, Oct 12 2004
EXTENSIONS
a(13)-a(14) from Jinyuan Wang, Feb 04 2020
a(15)-a(16) from Michael S. Branicky, Mar 05 2021
a(17)-a(18) from Michael S. Branicky, Apr 03 2023
a(19) from Michael S. Branicky, Jul 12 2024
STATUS
approved
Numbers k such that 6*k! - 1 is prime.
+10
10
0, 1, 2, 5, 8, 42, 318, 326, 1054, 2987, 11243
OFFSET
1,3
COMMENTS
Tested to 4400. - Robert G. Wilson v, Sep 28 2010
a(11) > 6300. - Jinyuan Wang, Feb 04 2020
MATHEMATICA
fQ[n_] := PrimeQ[6 n! - 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
PROG
(PARI) is(k) = ispseudoprime(6*k!-1); \\ Jinyuan Wang, Feb 04 2020
KEYWORD
nonn,more
AUTHOR
Robert G. Wilson v, Sep 13 2010
EXTENSIONS
a(10) from Robert G. Wilson v, Sep 28 2010
a(11) from Michael S. Branicky, Jul 04 2024
STATUS
approved
Numbers k such that 10*k! - 1 is prime.
+10
10
2, 3, 4, 33, 55, 95, 110, 148, 170, 612, 1155, 2295, 2473, 4143, 5671
OFFSET
1,1
COMMENTS
a(16) > 12000. - Michael S. Branicky, Jul 04 2024
MATHEMATICA
fQ[n_] := PrimeQ[10 n! - 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
KEYWORD
nonn,more
AUTHOR
Robert G. Wilson v, Sep 13 2010
EXTENSIONS
a(12)-a(14) from Jinyuan Wang, Feb 04 2020
a(15) from Michael S. Branicky, Jul 03 2024
STATUS
approved
Numbers k such that 9*k! - 1 is prime.
+10
8
2, 3, 12, 15, 16, 25, 30, 38, 59, 82, 114, 168, 172, 175, 213, 229, 251, 302, 311, 554, 2538, 3050, 3363, 12316
OFFSET
1,1
COMMENTS
a(22) > 2575. - Jinyuan Wang, Feb 03 2020
MATHEMATICA
fQ[n_] := PrimeQ[9 n! - 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
PROG
(PARI) is(k) = ispseudoprime(9*k!-1); \\ Jinyuan Wang, Feb 03 2020
KEYWORD
nonn,more
AUTHOR
Robert G. Wilson v, Sep 13 2010
EXTENSIONS
a(21) from Jinyuan Wang, Feb 03 2020
a(22)-a(23) from Michael S. Branicky, Apr 25 2023
a(24) from Michael S. Branicky, Nov 02 2024
STATUS
approved
Numbers k such that 8*k! - 1 is prime.
+10
6
0, 1, 3, 4, 8, 33, 121, 177, 190, 276, 473, 484, 924, 937, 1722, 2626, 4077, 4464, 6166
OFFSET
1,3
COMMENTS
Tested to 4700. - Robert G. Wilson v, Sep 27 2010
Tested to 5127. - Jinyuan Wang, Feb 03 2020
Tested to 12000. - Michael S. Branicky, Jul 11 2024
MATHEMATICA
fQ[n_] := PrimeQ[8 n! - 1]; k = 0; lst = {}; While[k < 1501, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst
PROG
(PARI) is(k) = ispseudoprime(8*k!-1); \\ Jinyuan Wang, Feb 03 2020
KEYWORD
nonn,more
AUTHOR
Robert G. Wilson v, Sep 13 2010
EXTENSIONS
a(15)-a(18) from Robert G. Wilson v, Sep 27 2010
a(19) from Michael S. Branicky, May 27 2023
STATUS
approved

Search completed in 0.009 seconds