[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a133388 -id:a133388
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) is the number of occurrences of n in A133388.
+20
2
2, 3, 4, 4, 5, 7, 6, 8, 8, 9, 9, 10, 10, 12, 13, 12, 12, 15, 14, 17, 16, 16, 17, 18, 19, 18, 19, 20, 18, 24, 20, 22, 25, 22, 27, 26, 23, 25, 25, 29, 26, 30, 27, 31, 32, 32, 24, 33, 33, 34, 32, 32, 35, 37, 36, 37, 38, 32, 35, 44, 36, 41, 41, 40, 42, 45, 39, 43, 42
OFFSET
1,1
PROG
(Python)
from sympy.solvers.diophantine.diophantine import diop_DN
def A356208(n): return sum(1 for m in range(1, (n**2<<1)+1) if n==max((a for a, b in diop_DN(-1, m)), default=0)) # Chai Wah Wu, Sep 08 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Sep 07 2022
STATUS
approved
a(n) is the position of the latest occurrence of n in A133388.
+20
2
2, 8, 18, 32, 41, 72, 98, 128, 162, 181, 242, 288, 313, 392, 421, 512, 514, 648, 722, 761, 882, 968, 1058, 1152, 1201, 1301, 1458, 1568, 1466, 1741, 1922, 2048, 2178, 2056, 2381, 2592, 2594, 2888, 2817, 3121, 3202, 3528, 3698, 3872, 3789, 4232, 4418, 4608, 4802, 4804, 5101
OFFSET
1,1
FORMULA
a(k) = 2*k^2 for k not in A009003.
PROG
(Python)
from sympy.solvers.diophantine.diophantine import diop_DN
def A356209(n):
for m in range(n**2<<1, 0, -1):
if n==max((a for a, b in diop_DN(-1, m)), default=0):
return m # Chai Wah Wu, Sep 08 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Sep 07 2022
STATUS
approved
Number of partitions of n into 2 squares.
+10
66
1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 1, 0
OFFSET
0,26
COMMENTS
Number of ways of writing n as a sum of 2 (possibly zero) squares when order does not matter.
Number of similar sublattices of square lattice with index n.
Let Pk = the number of partitions of n into k nonzero squares. Then we have A000161 = P0 + P1 + P2, A002635 = P0 + P1 + P2 + P3 + P4, A010052 = P1, A025426 = P2, A025427 = P3, A025428 = P4. - Charles R Greathouse IV, Mar 08 2010, amended by M. F. Hasler, Jan 25 2013
a(A022544(n))=0; a(A001481(n))>0; a(A125022(n))=1; a(A118882(n))>1. - Reinhard Zumkeller, Aug 16 2011
REFERENCES
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 339
LINKS
B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
R. T. Bumby, Sums of four squares, in Number theory (New York, 1991-1995), 1-8, Springer, New York, 1996.
J. H. Conway, E. M. Rains and N. J. A. Sloane, On the existence of similar sublattices, Canad. J. Math. 51 (1999), 1300-1306 (Abstract, pdf, ps).
E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, NY, 1985, p. 84.
M. D. Hirschhorn, Some formulas for partitions into squares, Discrete Math, 211 (2000), pp. 225-228. [From Ant King, Oct 05 2010]
FORMULA
a(n) = card { { a,b } c N | a^2+b^2 = n }. - M. F. Hasler, Nov 23 2007
Let f(n)= the number of divisors of n that are congruent to 1 modulo 4 minus the number of its divisors that are congruent to 3 modulo 4, and define delta(n) to be 1 if n is a perfect square and 0 otherwise. Then a(n)=1/2 (f(n)+delta(n)+delta(1/2 n)). - Ant King, Oct 05 2010
EXAMPLE
25 = 3^2+4^2 = 5^2, so a(25) = 2.
MAPLE
A000161 := proc(n) local i, j, ans; ans := 0; for i from 0 to n do for j from i to n do if i^2+j^2=n then ans := ans+1 fi od od; RETURN(ans); end; [ seq(A000161(i), i=0..50) ];
A000161 := n -> nops( numtheory[sum2sqr](n) ); # M. F. Hasler, Nov 23 2007
MATHEMATICA
Length[PowersRepresentations[ #, 2, 2]] &/@Range[0, 150] (* Ant King, Oct 05 2010 *)
PROG
(PARI) a(n)=sum(i=0, n, sum(j=0, i, if(i^2+j^2-n, 0, 1))) \\ for illustrative purpose
(PARI) A000161(n)=sum(k=sqrtint((n-1)\2)+1, sqrtint(n), issquare(n-k^2)) \\ Charles R Greathouse IV, Mar 21 2014, improves earlier code by M. F. Hasler, Nov 23 2007
(PARI) A000161(n)=#sum2sqr(n) \\ See A133388 for sum2sqr(). - M. F. Hasler, May 13 2018
(Haskell)
a000161 n =
sum $ map (a010052 . (n -)) $ takeWhile (<= n `div` 2) a000290_list
a000161_list = map a000161 [0..]
-- Reinhard Zumkeller, Aug 16 2011
(Python)
from math import prod
from sympy import factorint
def A000161(n):
f = factorint(n)
return int(not any(e&1 for e in f.values())) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f.items()))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 1 # Chai Wah Wu, Sep 08 2022
CROSSREFS
Equivalent sequences for other numbers of squares: A010052 (1), A000164 (3), A002635 (4), A000174 (5).
KEYWORD
nonn,core,easy,nice
STATUS
approved
Least index m>0 such that A136117(n)-A000326(m) is again a pentagonal number.
+10
11
5, 4, 7, 12, 19, 17, 25, 20, 10, 28, 45, 42, 39, 17, 37, 21, 36, 35, 13, 33, 65, 28, 67, 32, 52, 40, 74, 31, 70, 85, 35, 16, 60, 70, 77, 68, 42, 30, 105, 76, 59, 26, 74, 49, 115, 19, 125, 115, 102, 110, 92, 56, 103, 29, 145, 100, 114, 77, 92, 47, 63, 108, 152, 95, 22, 116
OFFSET
1,1
EXAMPLE
a(1)=5 is the least integer m>0 such that A136117(1)-P(m) is a pentagonal number, namely P(7)-P(5)=70-35=35=P(5).
a(2)=4 is the least integer m>0 such that A136117(2)-P(m) is a pentagonal number, namely P(8)-P(4)=92-22=70=P(7).
PROG
(PARI) A136118vect(n, i=-1)=vector(n, k, until(0, for(j=2, #n=sum2sqr((i+=6)^2+1), n[j]%6==[5, 5]||next; n=n[j]; break(2))); n[1]\6+1) /* This uses sum2sqr(), cf. A133388. Below some simpler but much slower code. */
my(P=A000326(n)=n*(3*n-1)/2, isPent(t)=P(sqrtint(t*2\3)+1)==t); for(i=1, 299, for(j=1, (i+1)\sqrt(2), isPent(P(i)-P(j))&print1(j", ")||next(2)))
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Dec 25 2007
STATUS
approved
Numbers of the form a^4 + b^6, with integers a, b > 0.
+10
9
2, 17, 65, 80, 82, 145, 257, 320, 626, 689, 730, 745, 810, 985, 1297, 1354, 1360, 2025, 2402, 2465, 3130, 4097, 4112, 4160, 4177, 4352, 4721, 4825, 5392, 6497, 6562, 6625, 7290, 8192, 10001, 10064, 10657, 10729, 14096, 14642, 14705, 15370, 15626, 15641, 15706, 15881
OFFSET
1,1
COMMENTS
A subsequence of A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^4 + b^2), A100291 (a^4 + b^3), A303372 (a^2 + b^6).
Although it is easy to produce many terms of this sequence, it is nontrivial to check whether a very large number is of this form. Maybe the most efficient way is to consider decompositions of n into sums of two positive squares (see sum2sqr in A133388), and check if one of the terms is a third power and the other a fourth power.
PROG
(PARI) is(n, k=4, m=6)=for(b=1, sqrtnint(n-1, m), ispower(n-b^m, k)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
is(n, L=sum2sqr(n))={for(i=1, #L, L[i][1]&&for(j=1, 2, ispower(L[i][j], 3)&&issquare(L[i][3-j])&&return(L[i][j])))} \\ See A133388 for sum2sqr(). Much faster than the above for n >> 10^30.
A303374(L=10^5, k=4, m=6, S=[])={for(a=1, sqrtnint(L-1, m), for(b=1, sqrtnint(L-a^m, k), S=setunion(S, [a^m+b^k]))); S}
CROSSREFS
Cf. A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303375 (a^5 + b^6).
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Apr 22 2018
STATUS
approved
Pentagonal numbers (A000326) which are the sum of 2 other positive pentagonal numbers.
+10
6
70, 92, 852, 925, 1247, 1426, 1926, 2625, 3577, 5192, 6305, 6501, 7107, 7740, 7957, 8177, 8626, 9560, 10292, 12927, 13207, 14652, 15555, 16172, 18095, 20475, 20827, 21901, 22265, 22632, 23002, 23751, 24130, 28497, 29330, 31032, 33227, 33675
OFFSET
1,1
COMMENTS
It is conjectured that every integer and hence every pentagonal number, greater than 33066, hence greater than A000326(149) = 33227, can be represented as the sum of three pentagonal numbers. - Jonathan Vos Post, Dec 18 2007
FORMULA
a(n) = A000326(A136116(n)) = A000326(m)+A136114(m) where m is the index of the n-th nonzero term in A136114 or A136115.
EXAMPLE
a(1)=70=P(7) is the least pentagonal number which can be written as sum of two other pentagonal numbers, P(7)=P(5)+P(5).
PROG
(PARI) P(n)=n*(3*n-1)>>1 /* a.k.a. A000326 */
isPent(t)=P(sqrtint(t<<1\3)+1)==t
for(i=1, 299, for(j=1, (i+1)\sqrt(2), isPent(P(i)-P(j)) && print1(P(i)", ") || next(2)))
/* The following is much faster, at the cost of implementing sum2sqr(), cf. A133388*/
A136117next(i)=i=sqrtint(i\3*2)*6+5; until(0, for(j=2, #t=sum2sqr((i+=6)^2+1), t[j]%6==[5, 5] && break(2))); i^2\24
A136117vect(n, i)=vector(n, j, i=A136117next(i)) /* 2nd arg =0 by default but allows one to start elsewhere */
A136117(n, i)=until(!n--, i=A136117next(i)); i \\ M. F. Hasler, Dec 25 2007
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Dec 15 2007; corrected Dec 25 2007
STATUS
approved
Numbers n such that n^3 is the sum of two distinct perfect powers > 1 (x^k + y^m; x, y, k, m >= 2).
+10
5
5, 7, 8, 10, 12, 13, 14, 17, 20, 25, 26, 28, 29, 32, 33, 34, 37, 40, 41, 45, 48, 50, 52, 53, 56, 57, 58, 61, 63, 65, 68, 71, 72, 73, 74, 78, 80, 82, 85, 89, 90, 97, 98, 100, 101, 104, 105, 106, 109, 112, 113, 114, 116, 117, 122, 125, 126, 128
OFFSET
1,1
COMMENTS
Motivated by the search of solutions to a^n + b^(2n+2)/4 = (perfect square), which arises when searching solutions to x^n + y^(n+1) = z^(n+2) of the form x = a*z, y = b*z. It turns out that many solutions are of the form a^n = d (b^(n+1) + d), where d is a perfect power.
LINKS
EXAMPLE
5^3 = 125 = 4^2 + 11^2; 7^3 = 10^2 + 3^5; 8^3 = 13^2 + 7^3, ...
MAPLE
N:= 200: # to get terms <= N
N3:= N^3:
P:= {seq(seq(x^k, k=3..floor(log[x](N3))), x=2..N)}:
filter:= proc(n) local n3, Pp, x, y;
n3:= n^3;
if remove(t -> subs(t, x)<=1 or subs(t, y)<=1 or subs(t, x-y)=0, [isolve(x^2+y^2=n3)]) <> [] then return true fi;
Pp:= map(t ->n3-t, P minus {n3, n3/2});
(Pp intersect P <> {}) or (select(issqr, Pp) <> {})
end proc:
select(filter, [$2..N]); # Robert Israel, Jun 01 2018
MATHEMATICA
M = 200;
M3 = M^3;
P = Union@ Flatten@ Table[Table[x^k, {k, 3, Floor[Log[x, M3]]}], {x, 2, M}];
filterQ[n_] := Module[{n3, Pp, x, y}, n3 = n^3; If[Solve[x > 1 && y > 1 && x != y && x^2 + y^2 == n3, {x, y}, Integers] != {}, Return[True]]; Pp = n3 - (P ~Complement~ {n3, n3/2}); (Pp ~Intersection~ P) != {} || Select[ Pp, IntegerQ[Sqrt[#]]&] != {}];
Select[Range[2, M], filterQ] (* Jean-François Alcover, Jun 21 2020, after Robert Israel *)
PROG
(PARI) L=200^3; P=List(); for(x=2, sqrtnint(L, 3), for(k=3, logint(L, x), listput(P, x^k))); #P=Set(P) \\ This P = A076467 \ {1} = A111231 \ {0} up to limit L.
is(n, e=3)={for(i=1, #s=sum2sqr(n=n^e), vecmin(s[i])>1 && s[i][1]!=s[i][2] && return(1)); for(i=1, #P, n>P[i]||return; ispower(n-P[i])&& P[i]*2 != n && return(1))} \\ The above P must be computed up to L >= n^3. For sum2sqr() see A133388.
CROSSREFS
Cf. A001597 (perfect powers), A076467 (cubes and higher powers), A304434, A304435, A304436 (analog for n^4, n^5, n^6).
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 12 2018
STATUS
approved
Numbers n such that n^4 is the sum of two distinct perfect powers > 1 (x^k + y^m; x, y, k, m >= 2).
+10
5
3, 5, 6, 9, 10, 12, 13, 14, 15, 17, 20, 24, 25, 26, 28, 29, 30, 34, 35, 36, 37, 39, 40, 41, 42, 45, 48, 50, 51, 52, 53, 55, 57, 58, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 78, 80, 82, 85, 87, 89, 90, 91, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 109, 110, 111, 113
OFFSET
1,1
COMMENTS
Motivated by the search of solutions to a^n + b^(2n+2)/4 = (perfect square), which arises when searching solutions to x^n + y^(n+1) = z^(n+2) of the form x = a*z, y = b*z. It turns out that many solutions are of the form a^n = d (b^(n+1) + d), where d is a perfect power.
LINKS
EXAMPLE
3^4 = 2^5 + 7^2; 5^4 = 7^2 + 24^2, ...
MAPLE
N:= 200: # to get terms <= N
N4:= N^4:
P:= {seq(seq(x^k, k=3..floor(log[x](N4))), x=2..floor(N4^(1/3)))}:
filter:= proc(n) local n4, Pp;
n4:= n^4;
if remove(t -> subs(t, x)<=1 or subs(t, y)<=1 or subs(t, x-y)=0, [isolve(x^2+y^2=n4)]) <> [] then return true fi;
Pp:= map(t ->n4-t, P minus {n4, n4/2});
(Pp intersect P <> {}) or (select(issqr, Pp) <> {})
end proc:
A:= select(filter, [$2..N]); # Robert Israel, May 24 2018
PROG
(PARI) L=200^4; P=List(); for(x=2, sqrtnint(L, 3), for(k=3, logint(L, x), listput(P, x^k))); #P=Set(P) \\ This P = A076467 \ {1} = A111231 \ {0} up to limit L.
is_A304434(n)={for(i=1, #s=sum2sqr(n=n^4), vecmin(s[i])>1 && s[i][1]!=s[i][2] && return(1)); for(i=1, #P, n>P[i]||return; ispower(n-P[i])&& P[i]*2 != n && return(1))} \\ The above P must be computed up to L >= n^4. For sum2sqr() see A133388.
CROSSREFS
Cf. A304433, A001597 (perfect powers), A076467 (third or higher powers).
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 22 2018
STATUS
approved
Indices of pentagonal numbers (A000326) which are the sum of 2 other positive pentagonal numbers.
+10
4
7, 8, 24, 25, 29, 31, 36, 42, 49, 59, 65, 66, 69, 72, 73, 74, 76, 80, 83, 93, 94, 99, 102, 104, 110, 117, 118, 121, 122, 123, 124, 126, 127, 138, 140, 144, 149, 150, 152, 161, 163, 168, 169, 174, 175, 178, 181, 185, 188, 190, 195, 199, 203, 209, 210, 212, 213
OFFSET
1,1
FORMULA
A000326(a(n))=A000326(m)+A136114(m) where m is the index of the n-th nonzero term in A136114 or A136115.
EXAMPLE
a(1)=7 since P(7)=70 is the least pentagonal number which can be written as sum of two other pentagonal numbers, P(7)=P(5)+P(5).
PROG
(PARI) P(n)=n*(3*n-1)>>1 /* a.k.a. A000326 */
isPent(t)=P(sqrtint(t<<1\3)+1)==t
for(i=1, 999, for(j=1, (i+1)\sqrt(2), isPent(P(i)-P(j))&print1(i", ") || next(2)))
/* The following are much faster, at the cost of implementing sum2sqr(), cf. A133388. */
A136116next(i)=i=6*i-1; until(0, for(j=2, #t=sum2sqr((i+=6)^2+1), t[j]%6==[5, 5] && break(2))); i\6+1
A136116vect(n, i=0)=vector(n, j, i=A136116next(i))
A136116(n, i=0)=until(!n--, i=A136116next(i)); i \\ M. F. Hasler, Dec 25 2007
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Dec 15 2007; corrected Dec 25 2007
STATUS
approved
Numbers which are the sum of two squared primes in exactly two ways (ignoring order).
+10
3
338, 410, 578, 650, 890, 1010, 1130, 1490, 1730, 1802, 1898, 1970, 2330, 2378, 2738, 3050, 3170, 3530, 3650, 3842, 3890, 4010, 4658, 4850, 5018, 5090, 5162, 5402, 5450, 5570, 5618, 5690, 5858, 6170, 6410, 6530, 6698, 7010, 7178, 7202, 7250, 7850, 7970, 8090
OFFSET
1,1
REFERENCES
Stan Wagon, Mathematica in Action, Springer, 2000 (2nd ed.), Ch. 17.5, pp. 375-378.
EXAMPLE
338 = 7^2 + 17^2 = 13^2 + 13^2;
410 = 7^2 + 19^2 = 11^2 + 17^2.
MAPLE
Prime2PairsSum := p -> select(x ->`if`(andmap(isprime, x), true, false), numtheory:-sum2sqr(p)):
for n from 2 to 10^6 do
if nops(Prime2PairsSum(n)) = 2 then print(n, Prime2PairsSum(n)) fi;
od;
MATHEMATICA
Select[Range@10000, Length[Select[ PowersRepresentations[#, 2, 2], And @@ PrimeQ[#] &]] == 2 &] (* Giovanni Resta, Jun 11 2013 *)
PROG
(PARI) select( is_A226539(n)={#[0|t<-sum2sqr(n), isprime(t[1])&&isprime(t[2])]==2}, [1..10^4]) \\ For more efficiency, apply selection to A045636. See A133388 for sum2sqr(). - M. F. Hasler, Dec 12 2019
CROSSREFS
Cf. A054735 (restricted to twin primes), A037073, A069496.
Cf. A045636 (sum of two squared primes: a superset).
Cf. A214511 (least number having n representations).
Cf. A226562 (restricted to sums decomposed in exactly three ways).
KEYWORD
nonn
AUTHOR
Henk Koppelaar, Jun 10 2013
EXTENSIONS
a(25)-a(44) from Giovanni Resta, Jun 11 2013
STATUS
approved

Search completed in 0.010 seconds