Displaying 1-10 of 11 results found.
8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653, 68921, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091, 2571353, 2685619, 3307949
COMMENTS
Numbers with exactly three factorizations: A001055(a(n)) = 3 (e.g., a(4) = 1*343 = 7*49 = 7*7*7). - Reinhard Zumkeller, Dec 29 2001
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (9/7) * (28/26) * (124/126) * (344/342) * (1332/1330) * ... = 48/35. - Dimitris Valianatos, Mar 06 2020
There exist 5 groups of order p^3, when p prime, so this is a subsequence of A054397. Three of them are abelian: C_p^3, C_p^2 X C_p and C_p X C_p X C_p = (C_p)^3. For 8 = 2^3, the 2 nonabelian groups are D_8 and Q_8; for odd prime p, the 2 nonabelian groups are (C_p x C_p) : C_p, and C_p^2 : C_p (remark, for p = 2, these two semi-direct products are isomorphic to D_8). Here C, D, Q mean Cyclic, Dihedral, Quaternion groups of the stated order; the symbols X and : mean direct and semidirect products respectively. - Bernard Schott, Dec 11 2021
REFERENCES
Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen über Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.
LINKS
Wikipedia, p-group, Classification.
FORMULA
Product_{n>=1} (1 + 1/a(n)) = zeta(3)/zeta(6) ( A157289).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(3) ( A088453). (End)
EXAMPLE
a(3) = 125; since the 3rd prime is 5, a(3) = 5^3 = 125.
PROG
(Sage)
(Haskell)
a030078 = a000578 . a000040
(Python)
from sympy import prime, primerange
def aupton(terms): return [p**3 for p in primerange(1, prime(terms)+1)]
CROSSREFS
Other sequences that are k-th powers of primes are: A000040 (k=1), A001248 (k=2), this sequence (k=3), A030514 (k=4), A050997 (k=5), A030516 (k=6), A092759 (k=7), A179645 (k=8), A179665 (k=9), A030629 (k=10), A079395 (k=11), A030631 (k=12), A138031 (k=13), A030635 (k=16), A138032 (k=17), A030637 (k=18).
Cubefull exponentially odd numbers: numbers whose prime factorization contains only odd exponents that are larger than 1.
+10
21
1, 8, 27, 32, 125, 128, 216, 243, 343, 512, 864, 1000, 1331, 1944, 2048, 2187, 2197, 2744, 3125, 3375, 3456, 4000, 4913, 6859, 7776, 8192, 9261, 10648, 10976, 12167, 13824, 16000, 16807, 17496, 17576, 19683, 24389, 25000, 27000, 29791, 30375, 31104, 32768, 35937
COMMENTS
This sequence is a permutation of A355038.
This sequence is also a permutation of the exponentially odd numbers ( A268335) multiplied by the square of their squarefree kernel ( A007947).
a(n)/rad(a(n)) is a permutation of the squares.
a(n)/rad(a(n))^2 is a permutation of the exponentially odd numbers.
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p*(p^2-1))) = 1.2312911... ( A065487).
EXAMPLE
8 = 2^3 is a term since the exponent of its prime factor 2 is 3 which is odd and larger than 1.
MATHEMATICA
Join[{1}, Select[Range[10^5], AllTrue[Last /@ FactorInteger[#], #1 > 1 && OddQ[#1] &] &]]
PROG
(Python)
from math import isqrt, prod
from sympy import factorint
def afind(N): # all terms up to limit N
cands = (n**2*prod(factorint(n**2)) for n in range(1, isqrt(N//2)+2))
return sorted(c for c in cands if c <= N)
Numbers with 14 divisors.
+10
13
192, 320, 448, 704, 832, 1088, 1216, 1458, 1472, 1856, 1984, 2368, 2624, 2752, 3008, 3392, 3645, 3776, 3904, 4288, 4544, 4672, 5056, 5103, 5312, 5696, 6208, 6464, 6592, 6848, 6976, 7232, 8019, 8128, 8192, 8384, 8768, 8896, 9477, 9536, 9664, 10048, 10432
MATHEMATICA
Select[Range[15000], DivisorSigma[0, #] == 14 &]
PROG
(Python)
from sympy import primepi, primerange, integer_nthroot
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//p**6) for p in primerange(integer_nthroot(x, 6)[0]+1))+primepi(integer_nthroot(x, 7)[0])-primepi(integer_nthroot(x, 13)[0])
Numbers of the form p^k, where p is a prime and k is a Fibonacci number.
+10
8
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233
MATHEMATICA
With[{nn=60}, Take[Join[{1}, Union[First[#]^Last[#]&/@Union[Flatten[ Outer[List, Prime[Range[nn]], Fibonacci[Range[nn/6]]], 1]]]], 70]] (* Harvey P. Dale, Jun 05 2012 *)
fib[lim_] := Module[{s = {}, f = 1, k = 2}, While[f <= lim, AppendTo[s, f]; k++; f = Fibonacci[k]]; s]; seq[max_] := Module[{s = {1}, p = 2, e = 1, f = {}}, While[e > 0, e = Floor[Log[p, max]]; If[f == {}, f = fib[e], f = Select[f, # <= e &]]; s = Join[s, p^f]; p = NextPrime[p]]; Sort[s]]; seq[250] (* Amiram Eldar, Aug 09 2024 *)
PROG
(PARI) {m=240; v=Set([]); forprime(p=2, m, i=0; while((s=p^fibonacci(i))<m, v=setunion(v, Set(s)); i++)); v=vecsort(eval(v)); for(j=1, #v, print1(v[j], ", "))}
CROSSREFS
Subsequence of A000961 (powers of primes).
Square array T(n,k) read by antidiagonal upwards in which row n lists the n-th powers of primes, hence column k lists the powers of the k-th prime, n >= 0, k >= 1.
+10
8
1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 7, 1, 32, 81, 125, 49, 11, 1, 64, 243, 625, 343, 121, 13, 1, 128, 729, 3125, 2401, 1331, 169, 17, 1, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 1, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23, 1, 1024, 19683, 390625, 823543, 1771561, 371293
COMMENTS
If n = p - 1 where p is prime, then row n lists the numbers with p divisors.
The partial sums of column k give the column k of A319076.
FORMULA
T(n,k) = A000040(k)^n, n >= 0, k >= 1.
EXAMPLE
The corner of the square array is as follows:
A000040 2, 3, 5, 7, 11, 13, 17, ...
A001248 4, 9, 25, 49, 121, 169, 289, ...
A030078 8, 27, 125, 343, 1331, 2197, 4913, ...
A030514 16, 81, 625, 2401, 14641, 28561, 83521, ...
A050997 32, 243, 3125, 16807, 161051, 371293, 1419857, ...
A030516 64, 729, 15625, 117649, 1771561, 4826809, 24137569, ...
A092759 128, 2187, 78125, 823543, 19487171, 62748517, 410338673, ...
A179645 256, 6561, 390625, 5764801, 214358881, 815730721, 6975757441, ...
...
PROG
(PARI) T(n, k) = prime(k)^n;
CROSSREFS
Rows 0-13: A000012, A000040, A001248, A030078, A030514, A050997, A030516, A092759, A179645, A179665, A030629, A079395, A030631, A138031.
Other rows n: A030635 (n=16), A030637 (n=18), A137486 (n=22), A137492 (n=28), A139571 (n=30), A139572 (n=36), A139573 (n=40), A139574 (n=42), A139575 (n=46), A173533 (n=52), A183062 (n=58), A183085 (n=60), A261700 (n=100).
Columns 1-15: A000079, A000244, A000351, A000420, A001020, A001022, A001026, A001029, A009967, A009973, A009975, A009981, A009985, A009987, A009991.
Numbers whose powerful part ( A057521) is a power of a prime with an odd exponent >= 3 ( A056824).
+10
3
8, 24, 27, 32, 40, 54, 56, 88, 96, 104, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 224, 232, 243, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 352, 375, 376, 378, 384, 408, 416, 424, 440, 456, 459, 472, 480, 486, 488, 512, 513, 520, 536, 544
COMMENTS
Numbers having exactly one non-unitary prime factor and its multiplicity is odd.
Numbers whose prime signature ( A118914) is of the form {1, 1, ..., 2*m+1} with m >= 1, i.e., any number (including zero) of 1's and then a single odd number > 1.
The asymptotic density of this sequence is (1/zeta(2)) * Sum_{p prime} 1/((p-1)*(p+1)^2) = 0.093382464285953613312...
MATHEMATICA
q[n_] := Module[{e = ReverseSort[FactorInteger[n][[;; , 2]]]}, e[[1]] > 1 && OddQ[e[[1]]] && (Length[e] == 1 || e[[2]] == 1)]; Select[Range[1000], q]
PROG
(PARI) isok(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2], , 4)); e[1] % 2 && e[1] > 1 && (#e == 1 || e[2] == 1));
CROSSREFS
Subsequences: A030078, A050997, A056824, A065036, A079395, A092759, A138031, A178740, A179664, A179665, A179667, A179670, A179692, A179696, A179704, A189975, A189984, A190378, A190383, A190473.
Numbers whose number of divisors is divisible by 7.
+10
2
64, 192, 320, 448, 576, 704, 729, 832, 960, 1088, 1216, 1344, 1458, 1472, 1600, 1728, 1856, 1984, 2112, 2240, 2368, 2496, 2624, 2752, 2880, 2916, 3008, 3136, 3264, 3392, 3520, 3645, 3648, 3776, 3904, 4032, 4160, 4288, 4416, 4544, 4672, 4800, 4928, 5056, 5103
COMMENTS
The asymptotic density of this sequence is 1 - zeta(7)/zeta(6) = 0.0088404638... (Sathe, 1945).
EXAMPLE
64 is a term since A000005(64) = 7 is divisible by 7.
MAPLE
q:= n-> is(irem(numtheory[tau](n), 7)=0):
MATHEMATICA
Select[Range[5000], Divisible[DivisorSigma[0, #], 7] &]
Powerful numbers whose prime factorization has an odd maximum exponent.
+10
2
8, 27, 32, 72, 108, 125, 128, 200, 216, 243, 288, 343, 392, 500, 512, 675, 800, 864, 968, 972, 1000, 1125, 1152, 1323, 1331, 1352, 1372, 1568, 1800, 1944, 2048, 2187, 2197, 2312, 2592, 2700, 2744, 2888, 3087, 3125, 3200, 3267, 3375, 3456, 3528, 3872, 3888, 4000
COMMENTS
Subsequence of A102834 and first differs from it at n = 14: A102834(14) = 432 = 2^4 * 3^3 is not a term of this sequence.
Powerful numbers k such that A051903(k) is odd.
Equivalently, numbers whose prime factorization exponents are all larger than 1 and their maximum is odd. The maximum exponent in the prime factorization of 1 is considered to be A051903(1) = 0, and therefore 1 is not a term of this sequence.
The numbers of terms that do not exceed the 10^k-powerful number ( A376092(k)), for k = 1, 2, ..., are 3, 40, 416, 4255, 42829, 429393, 4299797, 43022803, ... . Apparently, the asymptotic density of this sequence within the powerful numbers ( A001694) exists and approximately equals 0.43.
FORMULA
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Sum_{k>=2} (-1)^k * s(k) = 0.29116340833243888282..., where s(k) = Product_{p prime} (1 + Sum_{i=2..k} 1/p^i).
MATHEMATICA
seq[lim_] := Select[Union@ Flatten@ Table[i^2 * j^3, {j, 1, Surd[lim, 3]}, {i, 1, Sqrt[lim/j^3]}], # > 1 && OddQ[Max[FactorInteger[#][[;; , 2]]]] &]; seq[10^4]
PROG
(PARI) is(k) = {my(f = factor(k), e = f[, 2]); #e && ispowerful(f) && vecmax(e) % 2; }
Numbers k such that d(k) / 2 is prime, where d(k) = number of divisors of k.
+10
1
6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 106, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 125, 129, 133, 134
COMMENTS
Numbers whose sorted prime signature ( A118914) is either of the form {2*p-1} or {1, p-1}, where p is a prime. Equivalently, disjoint union of numbers of the form q^(2*p-1) where p and q are primes, and numbers of the form r * q^(p-1), where p, q and r are primes and r != q. - Amiram Eldar, Sep 09 2024
MATHEMATICA
Select[Range[1, 1000], PrimeQ[DivisorSigma[0, # ] / 2] == True &]
PROG
(PARI) n=0; for (m=1, 10^9, f=numdiv(m)/2; if (frac(f)==0 && isprime(f), write("b065985.txt", n++, " ", m); if (n==1000, return))) \\ Harry J. Smith, Nov 05 2009
Sum of the thirteenth powers of the first n primes.
+10
1
8192, 1602515, 1222305640, 98111316047, 34620823459978, 337495930052231, 10242073962958168, 52295057425215227, 556331419361682610, 10816960132320284799, 35234506429765327390, 278803730645846632787, 1203906832960860262108, 2922170957243151047351
FORMULA
a(n) = Sum_{k=1..n} prime(k)^13.
MATHEMATICA
Table[Sum[Prime[k]^13, {k, n}], {n, 100}]
CROSSREFS
Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Search completed in 0.007 seconds
|