[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a136333 -id:a136333
     Sort: relevance | references | number | modified | created      Format: long | short | data
Smallest prime having in decimal representation A136333(n) as suffix.
+20
5
11, 3, 7, 19, 11, 13, 17, 19, 31, 233, 37, 139, 71, 73, 277, 79, 191, 193, 97, 199, 2111, 113, 1117, 3119, 131, 4133, 137, 139, 1171, 173, 4177, 179, 191, 193, 197, 199, 311, 313, 317, 1319, 331, 2333, 337, 2339, 2371, 373, 2377, 379, 3391, 2393, 397, 1399
OFFSET
1,1
COMMENTS
a(n) = A136333(n) iff A136333(n) itself is a prime number, cf. A091633.
LINKS
EXAMPLE
. n | a(n) | A136333(n)
. ------+---------+-----------
. 10 | 233 | 33
. 11 | 37 | 37
. 12 | 139 | 39
. 13 | 71 | 71
. 14 | 73 | 73
. 15 | 277 | 77
. 16 | 79 | 79
. 17 | 191 | 91
. 18 | 193 | 93
. 19 | 97 | 97
. 20 | 199 | 99
. 21 | 2111 | 111
. 22 | 113 | 113
. 23 | 1117 | 117
. 24 | 3119 | 119
. 25 | 131 | 131
. 26 | 4133 | 133
. 27 | 137 | 137
. 28 | 139 | 139
. 29 | 1171 | 171
. 30 | 173 | 173 .
PROG
(Haskell)
import Data.List (isSuffixOf); import Data.Function (on)
a245193 n = head [p | p <- a000040_list,
(isSuffixOf `on` show) (a136333 n) p]
(PARI) isok(m) = my(d=digits(m)); apply(x->gcd(x, 10), d) == vector(#d, k, 1); \\ A136333
f(m) = my(p=nextprime(m), s=10^#Str(m)); while ((p-m) % s, p = nextprime(p+1)); p;
lista(nn) = apply(x->f(x), select(isok, [1..nn]));
lista(1000) \\ Michel Marcus, Feb 25 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Jul 18 2014
STATUS
approved
Numbers m such that all 10*m+d_1, 100*m+d_2 and 1000*m+d_3 are composite, where d_i are any i-digit numbers of A136333.
+20
0
487856, 694103, 771084, 836254, 1051886, 1119347, 1122734, 1157014, 1181077, 1591742, 1638820, 1646819, 1820743, 1921148, 1945355, 2001782, 2026571
OFFSET
1,1
COMMENTS
A subsequence A163398 satisfying an additional requirement on the 1000*m+d_3 compositions.
EXAMPLE
m=487856 is in the sequence because 4878561, 4878563, 4878567, 4878569 from attachment of
d_1 = 1 to 9, and 48785611, 48785613, .., 48785697, 48785699 from attachment of
d_2 = 11 to 99, and 487856111, 487856113,..., 487856997, 487856999 from
attachment of d_3=111 to 999 are all composite.
CROSSREFS
Cf. A002808.
KEYWORD
nonn,base
AUTHOR
Vladislav-Stepan Malakhovsky and Juri-Stepan Gerasimov, Jul 26 2009
EXTENSIONS
13 more terms from R. J. Mathar, Aug 07 2009
STATUS
approved
Primes whose digits are restricted to 1,3,7,9 (same as terminal digits of primes).
+10
13
3, 7, 11, 13, 17, 19, 31, 37, 71, 73, 79, 97, 113, 131, 137, 139, 173, 179, 191, 193, 197, 199, 311, 313, 317, 331, 337, 373, 379, 397, 719, 733, 739, 773, 797, 911, 919, 937, 971, 977, 991, 997, 1117, 1171, 1193, 1319, 1373, 1399, 1733, 1777, 1913, 1931, 1933
OFFSET
1,1
COMMENTS
Some primes of sufficient length might be termed DNA primes if the sequence of digits 1,3,7,9 in any order happens to be an appropriate analog of the DNA bases A, G, C, T. It would be interesting to know if it is possible for any DNA sequence to match a DNA prime.
LINKS
Pierre Cami and Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 5058 terms from Pierre Cami)
FORMULA
Select primes having digits 1, 3, 7, 9 only.
a(n) = A000040(A091871(n)). - R. J. Mathar, Aug 29 2018
MATHEMATICA
Select[Flatten[Table[FromDigits/@Tuples[{1, 3, 7, 9}, n], {n, 4}]], PrimeQ] (* Harvey P. Dale, Jun 26 2015 *)
PROG
(Haskell)
a091633 n = a091633_list !! (n-1)
a091633_list = filter ((== 1) . a010051') a136333_list
-- Reinhard Zumkeller, Jul 17 2014
CROSSREFS
Subsequence of A136333, A245193, and A030096.
A091871 gives prime index.
Cf. A010051.
KEYWORD
easy,nonn,base
AUTHOR
Enoch Haga, Jan 26 2004
STATUS
approved
Lexicographically earliest sequence of integers with property that if a vertical line is drawn between any pair of adjacent digits, the number Z formed by the digits to the left of the line is divisible by the digit to the right of the line.
+10
3
1, 11, 3, 7, 71, 31, 111, 113, 33, 117, 77, 13, 37, 711, 1111, 19, 9, 91, 1117, 73, 311, 131, 1131, 1133, 93, 331, 11111, 39, 99, 97, 119, 333, 911, 133, 931, 1139, 771, 337, 713, 339, 933, 391, 1137, 773, 1113, 991, 11171, 3111, 777, 3311, 79, 17, 191, 171, 11311, 137, 719, 993
OFFSET
1,2
COMMENTS
"Lexicographically earliest" means in the sense of a sequence of integers, not digits.
No digit can be even or five. - Hans Havermann, Jul 02 2014 [Proof: if not, let d be the first digit in the sequence that is even or 5, and let Z be the concatenation of all earlier digits. But then Z is odd and does not end in 5, so is not divisible by d. Contradiction. - N. J. A. Sloane, Jul 03 2014] So any term must have only the odd digits {1, 3, 7, 9} (see A136333). - Robert G. Wilson v, Jul 02 2014
We choose the next term, a(n), to be the minimal number not already in the sequence such that the property "if a vertical line is drawn between any pair of adjacent digits, the number Z formed by the digits to the left of the line is divisible by the first digit following Z" holds.
So even if Z is prime, the next term can start with a 1.
So if Z is divisible by any d in {2,3,...,9} the next term can start with 1 or d, otherwise it must start with 1.
This sequence is missing A136333 terms 313, 319, 373, 379, 717, 737, 797, 913, 919, 939, 973, 979, 1313, ... The earliest occurrences of n-digit numbers are the repunits at indices 1, 2, 7, 15, 27, 97, 372, 939, 2164, 4781, 10851, 22779, 47056, ... The latest n-digit numbers and their indices are: (9,17), (17,52), (397,290), (1917,867), (19317,2003), (199117,7241), (1999117,17953), (19999997,44173), ... - Hans Havermann, Jul 04 2014, Jul 07 2014, Jul 15 2014
REFERENCES
Eric Angelini, Posting to Sequence Fans Mailing List, Jun 26 2014
LINKS
Robert G. Wilson v and Hans Havermann (Robert G. Wilson v to 1000), Table of n, a(n) for n = 1..10850
EXAMPLE
After 1,11,3,7, let a(5) = x be the next term. Now 11137 = 7*37*43, so x must begin with 1 or 7. The candidates for x are therefore 12,13,...,19,71,72,,...,79,111,...
If x=12, we would get 1 11 3 7 12 ... but Z = 11371 is prime and is not divisible by 2, ..., 9. So x is not 12, ...,19. The next candidate is x=71, and this works. So a(5)=71.
MATHEMATICA
r=f=e={1, 3, 7, 9}; Do[e=10*e; f=Flatten[Table[e[[i]]+f, {i, 4}]]; r=Join[r, f], {9}]; r=Select[r, Intersection[Partition[IntegerDigits[#], 3, 1], IntegerDigits[{313, 319, 373, 379, 717, 737, 797, 913, 919, 939, 973, 979}]]=={}&]; t=0; Do[c=1; While[d=IntegerDigits[r[[c]]]; Union[Table[IntegerQ[(10^i*t+FromDigits[Take[d, i]])/d[[i+1]]], {i, 0, Length[d]-1}]]!={True}, c++]; Print[r[[c]]]; t=10^Length[d]*t+r[[c]]; r=Delete[r, c], {10850}] (* Hans Havermann, Jul 04 2014 *)
CROSSREFS
A sister sequence to A243357 and A244496. A subsequence of A136333.
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Jul 02 2014
EXTENSIONS
Corrected and extended by Hans Havermann, Jul 02 2014
STATUS
approved
A091633 indexed by A000040.
+10
2
2, 4, 5, 6, 7, 8, 11, 12, 20, 21, 22, 25, 30, 32, 33, 34, 40, 41, 43, 44, 45, 46, 64, 65, 66, 67, 68, 74, 75, 78, 128, 130, 131, 137, 139, 156, 157, 159, 164, 165, 167, 168, 187, 193, 196, 215, 220, 222, 270, 275, 293, 294, 295, 298, 299, 301, 302, 303, 444, 446
OFFSET
1,1
LINKS
FORMULA
a(n)=k such that A000040(k) = A091633(n).
a(n) = A049084(A091633(n)). - Reinhard Zumkeller, Jul 18 2014
PROG
(Haskell)
a091871 n = a091871_list !! (n-1)
a091871_list = f [1..] a000040_list where
f (i:is) (p:ps) = if (null $ show p `intersect` "024568")
then i : f is ps else f is ps
-- Reinhard Zumkeller, Jul 18 2014
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Ray Chandler, Feb 07 2004
STATUS
approved
Numbers m such that all numbers 10*m+(odd single-digit number) and 100*m+(any 2-digit, digits coprime to 10) are composite.
+10
1
167, 176, 403, 513, 761, 935, 1037, 1218, 1307, 1559, 1865, 1932, 1995, 2057, 2123, 2255, 2288, 2340, 2414, 2852, 3152, 3483, 3581, 3734, 3914, 4136, 4169, 4226, 4238, 4265, 4373, 4390, 4433, 4436, 4443, 4460, 4466, 4482, 4631, 4706, 4806, 4842, 4850
OFFSET
1,1
COMMENTS
The first requirement is that 10m+1, 10m+3, 10m+5, 10m+7 and 10m+9 are all composite; for 10*m+5 with the divisor 5 this is redundant. The second requirement is that 100*m plus any 2-digit number of A136333 is also composite.
EXAMPLE
m=167 is in the sequence because 1671, 1673, 1677, 1679, 16711, 16713, 16717, 16719, 16731,
16733, 16737, 16739, 16771, 16773, 16777, 16779, 16791, 16793, 16797, 16799 are composites.
CROSSREFS
Cf. A002808.
KEYWORD
nonn,base,less
AUTHOR
Vladislav-Stepan Malakhovsky and Juri-Stepan Gerasimov, Jul 26 2009
EXTENSIONS
Rephrased in terms of A136333 and extended by R. J. Mathar, Aug 02 2009
STATUS
approved
Composite numbers whose digits are restricted to 1, 3, 7, and 9.
+10
0
9, 33, 39, 77, 91, 93, 99, 111, 113, 117, 119, 133, 171, 177, 319, 333, 339, 371, 377, 391, 393, 399, 711, 713, 717, 731, 737, 771, 777, 779, 791, 793, 799, 913, 917, 931, 933, 939, 973, 979, 993, 999
OFFSET
1,1
MATHEMATICA
Select[Flatten@ Array[FromDigits /@ Tuples[{1, 3, 7, 9}, #] &, 3], CompositeQ] (* Michael De Vlieger, Jun 01 2017 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Luke Zieroth, May 26 2017
STATUS
approved

Search completed in 0.005 seconds