[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a123092 -id:a123092
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of (1/16)*Pi^2.
+10
26
6, 1, 6, 8, 5, 0, 2, 7, 5, 0, 6, 8, 0, 8, 4, 9, 1, 3, 6, 7, 7, 1, 5, 5, 6, 8, 7, 4, 9, 2, 2, 5, 9, 4, 4, 5, 9, 5, 7, 1, 0, 6, 2, 1, 2, 9, 5, 2, 5, 4, 9, 4, 1, 4, 1, 5, 0, 8, 3, 4, 3, 3, 6, 0, 1, 3, 7, 5, 2, 8, 0, 1, 4, 0, 1, 2, 0, 0, 3, 2, 7, 6, 8, 7, 6, 1, 0, 8, 3, 7, 7, 3, 2, 4, 0, 9, 5, 1, 4, 4, 8, 9, 0, 0
OFFSET
0,1
COMMENTS
Conjectured to be density of densest packing of equal spheres in four dimensions (achieved for example by the D_4 lattice).
From Hugo Pfoertner, Aug 29 2018: (Start)
Also decimal expansion of Sum_{k>=0} (-1)^k*d(2*k+1)/(2*k+1), where d(n) is the number of divisors of n A000005(n).
Ramanujan's question 770 in the Journal of the Indian Mathematical Society (VIII, 120) asked "If d(n) denotes the number of divisors of n, show that d(1) - d(3)/3 + d(5)/5 - d(7)/7 + d(9)/9 - ... is a convergent series ...".
A summation of the first 2*10^9 terms performed by Hans Havermann yields 0.6168503077..., which is close to (Pi/4)^2=0.616850275...
(End)
From Robert Israel, Aug 31 2018: (Start)
Modulo questions about rearrangement of conditionally convergent series, which I expect a more careful treatment would handle, Sum_{k>=0} (-1)^k*d(2*k+1)/(2*k+1) should indeed be Pi^2/16.
Sum_{k>=0} (-1)^k d(2k+1)/(2k+1)
= Sum_{k>=0} Sum_{2i+1 | 2k+1} (-1)^k/(2k+1)
(letting 2k+1=(2i+1)(2j+1): note that k == i+j (mod 2))
= Sum_{i>=0} Sum_{j>=0} (-1)^(i+j)/((2i+1)(2j+1))
= (Sum_{i>=0} (-1)^i/(2i+1))^2 = (Pi/4)^2. (End)
Volume bounded by the surface (x+y+z)^2-2(x^2+y^2+z^2)=4xyz, the ellipson (see Wildberger, p. 287). - Patrick D McLean, Dec 03 2020
REFERENCES
S. D. Chowla, Solution and Remarks on Question 770, J. Indian Math. Soc. 17 (1927-28), 166-171.
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.7, p. 507.
S. Ramanujan, Coll. Papers, Chelsea, 1962, Question 770, page 333.
G. N. Watson, Solution to Question 770, J. Indian Math. Soc. 18 (1929-30), 294-298.
LINKS
B. C. Berndt, Y. S. Choi and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q770, JIMS VIII).
J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383-403.
Mathematics StackExchange, Sum_k (-1)^k tau(2k+1)/(2k+1).
G. Nebe and N. J. A. Sloane, Home page for D_4 lattice.
N. J. Wildberger, Divine Proportions: Rational Trigonometry to Universal Geometry, Wild Egg Books, Sydney 2005.
FORMULA
Equals A003881^2. - Bruno Berselli, Feb 11 2013
Equals A123092+1/2. - R. J. Mathar, Feb 15 2013
Equals Integral_{x>0} x^2*log(x)/((1+x)^2*(1+x^2)) dx. - Jean-François Alcover, Apr 29 2013
Equals the Bessel moment integral_{x>0} x*I_0(x)*K_0(x)^3. - Jean-François Alcover, Jun 05 2016
Equals Sum_{k>=1} zeta(2*k)*k/4^k. - Amiram Eldar, May 29 2021
EXAMPLE
0.6168502750680849136771556874922594459571...
MATHEMATICA
RealDigits[N[Gamma[3/2]^4, 104]] (* Fred Daniel Kline, Feb 19 2017 *)
RealDigits[N[Pi^2/16, 100]][[1]] (* Vincenzo Librandi, Feb 20 2017 *)
Integrate[Boole[(x+y+z)^2-2(x^2+y^2+z^2)>4x y z], {x, 0, 1}, {y, 0, 1}, {z, 0, 1}] (* Patrick D McLean, Dec 03 2020 *)
PROG
(PARI) (Pi/4)^2 \\ Charles R Greathouse IV, Oct 31 2014
(Magma) pi:=Pi(RealField(110)); Reverse(Intseq(Floor((1/16)*10^100*pi^2))); // Vincenzo Librandi, Feb 20 2017
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Feb 10 2013
STATUS
approved
a(n) = (4*n^2 - 1)^2.
+10
4
1, 9, 225, 1225, 3969, 9801, 20449, 38025, 65025, 104329, 159201, 233289, 330625, 455625, 613089, 808201, 1046529, 1334025, 1677025, 2082249, 2556801, 3108169, 3744225, 4473225, 5303809, 6245001, 7306209, 8497225, 9828225, 11309769
OFFSET
0,2
COMMENTS
Products of squares of 2 successive odd numbers. - Peter Munn, Nov 17 2019
REFERENCES
L. B. W. Jolley, Summation of Series, Dover, 1961.
Konrad Knopp, Theory and application of infinite series, Dover, 1990, p. 269.
LINKS
Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original german edition of "Theory and Application of Infinite Series")
FORMULA
Sum_{n>=1} 1/a(n) = (Pi^2 - 8)/16 = 0.1168502750680... (A123092) [Jolley eq. 247]
G.f.: (-1 - 4*x - 190*x^2 - 180*x^3 - 9*x^4) / (x-1)^5. - R. J. Mathar, Oct 03 2011
a(n) = A000466(n)^2. - Peter Munn, Nov 17 2019
E.g.f.: exp(x)*(1 + 8*x + 104*x^2 + 96*x^3 + 16*x^4). - Stefano Spezia, Nov 17 2019
Sum_{n>=0} (-1)^n/a(n) = Pi/8 + 1/2. - Amiram Eldar, Feb 08 2022
MATHEMATICA
(4*Range[0, 30]^2-1)^2 (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 9, 225, 1225, 3969}, 30] (* Harvey P. Dale, Feb 23 2018 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Apr 05 2002
STATUS
approved
Decimal expansion of Sum_{i >= 1} 1/(4*i^2-1)^3.
+10
1
0, 3, 7, 3, 6, 2, 2, 9, 3, 6, 9, 8, 9, 3, 6, 3, 1, 4, 7, 4, 2, 1, 3, 3, 2, 3, 4, 3, 8, 0, 8, 0, 5, 4, 1, 5, 5, 3, 2, 1, 7, 0, 3, 4, 0, 2, 8, 5, 5, 8, 7, 9, 3, 9, 3, 8, 6, 8, 7, 4, 2, 4, 7, 9, 8, 9, 6, 8, 5, 3, 9, 8, 9, 4, 9, 0, 9, 9, 7, 5, 4, 2, 3, 4, 2, 9, 1
OFFSET
0,2
LINKS
Xavier Gourdon and Pascal Sebah, Collection of series for Pi (see paragraph 7).
FORMULA
Equals 1/2 - 3*(Pi/8)^2.
EXAMPLE
0.0373622936989363147421332343808054155321703402855879393868742479896853989...
MATHEMATICA
Join[{0}, RealDigits[1/2 - 3 (Pi/8)^2, 10, 100][[1]]]
CROSSREFS
Cf. A123092: Sum_{i >= 1} 1/(4*i^2-1)^2.
Cf. A248896: Sum_{i >= 1} 1/(4*i^2-1)^4.
KEYWORD
nonn,cons
AUTHOR
Bruno Berselli, Mar 06 2015
STATUS
approved
Decimal expansion of Sum_{i >= 1} 1/(4*i^2-1)^4.
+10
1
0, 1, 2, 3, 6, 6, 1, 7, 5, 8, 6, 8, 0, 7, 7, 0, 7, 7, 8, 6, 6, 5, 0, 3, 9, 8, 7, 8, 7, 1, 0, 8, 0, 2, 6, 7, 3, 2, 9, 6, 0, 7, 5, 1, 0, 2, 7, 3, 3, 1, 9, 1, 9, 3, 3, 3, 8, 3, 7, 0, 2, 3, 5, 2, 5, 5, 9, 5, 3, 3, 8, 5, 5, 8, 5, 1, 6, 0, 6, 1, 6, 5, 1, 0, 6, 4, 4, 6, 2, 1, 5, 4, 4
OFFSET
0,3
LINKS
Xavier Gourdon and Pascal Sebah, Collection of series for Pi (see paragraph 7).
FORMULA
Equals (Pi^4 + 30*Pi^2 - 384)/768.
EXAMPLE
0.0123661758680770778665039878710802673296075102733191933383702352559...
MATHEMATICA
Join[{0}, RealDigits[(Pi^4 + 30 Pi^2 - 384)/768, 10, 100][[1]]]
CROSSREFS
Cf. A123092: Sum_{i >= 1} 1/(4*i^2-1)^2.
Cf. A248895: Sum_{i >= 1} 1/(4*i^2-1)^3.
KEYWORD
nonn,cons
AUTHOR
Bruno Berselli, Mar 06 2015
STATUS
approved

Search completed in 0.007 seconds