[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a111579 -id:a111579
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle, generated from A111579.
+20
2
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 15, 11, 4, 1, 1, 1, 52, 49, 19, 5, 1, 1, 1, 203, 257, 109, 29, 6, 1, 1, 1, 877, 1539, 742, 201, 41, 7, 1, 1, 1, 4140, 10299, 5815, 1657, 331, 55, 8, 1, 1, 1, 21147, 75905, 51193, 15821, 3176, 505, 71, 9, 1, 1, 1, 115975, 609441, 498118, 170389, 35451, 5497, 729, 89, 10, 1, 1
OFFSET
0,8
COMMENTS
Columns are inverse binomial transforms of columns (k>0) of A111579.
LINKS
A. Kerber, A matrix of combinatorial numbers related to the symmetric groups, Discrete Math., 21 (1978), 319-321.
A. Kerber, A matrix of combinatorial numbers related to the symmetric groups, Discrete Math., 21 (1978), 319-321. [Annotated scanned copy]
EXAMPLE
First few rows of the triangle are:
1,
1, 1,
1, 1, 1,
1, 2, 1, 1,
1, 5, 3, 1, 1,
1, 15, 11, 4, 1, 1,
1, 52, 49, 19, 5, 1, 1,
1, 203, 257, 109, 29, 6, 1, 1,
1, 877, 1539, 742, 201, 41, 7, 1, 1,
1, 4140, 10299, 5815, 1657, 331, 55, 8, 1, 1,
...
Inverse binomial transform of column 2 of A111579 (1, 2, 5, 15, 52, 203...) = column 2 (1, 1, 2, 5, 15, 52...).
CROSSREFS
For two other versions of this triangle see A241578, A241579.
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Aug 14 2005
EXTENSIONS
More terms from N. J. A. Sloane, Apr 29 2014
STATUS
approved
Triangle read by rows, based on a simple Fibonacci recursion rule.
+10
4
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 11, 7, 1, 1, 5, 26, 32, 12, 1, 1, 6, 57, 122, 92, 20, 1, 1, 7, 120, 423, 582, 252, 33, 1, 1, 8, 247, 1389, 3333, 2598, 681, 54, 1, 1, 9, 502, 4414, 18054, 24117, 11451, 1815, 88, 1, 1, 10, 1013, 13744, 94684, 210990, 172980, 49566, 4807, 143, 1
OFFSET
0,5
COMMENTS
Subdiagonal is A000071(n+3). Row sums of inverse are 0^n.
Row sums are given by A135934. - Emanuele Munarini, Dec 05 2017
LINKS
FORMULA
T(n, k) = T(n-1, k-1) + F(k+1)*T(n-1, k) where F(n)=A000045(n).
Column k has g.f. x^k/Product_{j=0..k} (1 - F(j+1)*x).
EXAMPLE
Triangle begins
1....1....2....3....5....8...13....F(k+1)
1
1....1
1....2....1
1....3....4....1
1....4...11....7....1
1....5...26...32...12....1
1....6...57..122...92...20....1
For example, T(6,3) = 122 = 26 + 3*32 = T(5,2) + F(4)*T(5,3).
MATHEMATICA
(* To generate the triangle *)
Grid[RecurrenceTable[{F[n, k] == F[n-1, k-1] + Fibonacci[k+1] F[n-1, k], F[0, k] == KroneckerDelta[k]}, F, {n, 0, 10}, {k, 0, 10}]] (* Emanuele Munarini, Dec 05 2017 *)
PROG
(PARI) T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, T(n-1, k-1) + fibonacci(k+1)*T(n-1, k))); \\ Michel Marcus, May 25 2024
KEYWORD
easy,nonn,tabl
AUTHOR
Gary W. Adamson, Aug 14 2005
EXTENSIONS
Edited by Paul Barry, Nov 14 2005
STATUS
approved

Search completed in 0.006 seconds