[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a111153 -id:a111153
     Sort: relevance | references | number | modified | created      Format: long | short | data
Squares in A111153.
+20
2
4, 25, 169, 289, 361, 529, 961, 2809, 5041, 7921, 12769, 16129, 24649, 26569, 27889, 32761, 38809, 52441, 120409, 139129, 160801, 167281, 175561, 201601, 237169, 253009, 259081, 273529, 292681, 316969, 326041, 332929, 358801, 418609, 564001
OFFSET
1,1
COMMENTS
All terms == 1 mod 3.
FORMULA
a(n) = A175256(n)^2.
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 15 2010
STATUS
approved
First of three consecutive Sophie Germain semiprimes: n, n+1 and n+2 are all terms of A111153.
+20
1
15117, 17245, 34413, 93453, 143101, 157713, 190621, 208293, 233097, 294301, 323281, 346497, 470341, 501477, 1306113, 1337221, 1346401, 1655853, 1682313, 1774801, 1877613, 1879021, 1933233, 1976041
OFFSET
1,1
COMMENTS
All terms are 1 mod 4, see A056809.
MATHEMATICA
po[x_] := PrimeOmega[x]; Select[Range[15117, 200000, 2],
2 == po[#] == po[2*# + 1] ==po[# + 1] == po[2*# + 3] == po[# + 2] ==
po[2*# + 5] &]
PROG
(PARI) {bo(x)=bigomega(x)
forstep(n=15117, 2000000, 2, if(
2 == bo(n) && 2 == bo(n+1) && 2 == bo(n+2) && 2 == bo(2*n+1) &&
2 == bo(2*n+3) && 2 == bo(2*n+5), print1(n", ")))}
(PARI) list(lim)=lim\=1; my(v=List(), x=2*lim+5, u=vectorsmall(x)); forprime(p=2, x\2, forprime(q=2, min(lim\p, p), u[p*q]=1)); forstep(n=15117, lim, 4, if(u[n] && u[n+1] && u[n+2] && u[2*n+1] && u[2*n+3] && u[2*n+5], listput(v, n))); Vec(v) \\ Charles R Greathouse IV, Mar 10 2017
CROSSREFS
Subsequence of A056809 and of A111153. Cf. A001358.
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 09 2017
STATUS
approved
Semi-Sophie Germain semiprimes: semiprimes which are the product of Sophie Germain primes.
+10
17
4, 6, 9, 10, 15, 22, 25, 33, 46, 55, 58, 69, 82, 87, 106, 115, 121, 123, 145, 159, 166, 178, 205, 226, 249, 253, 262, 265, 267, 319, 339, 346, 358, 382, 393, 415, 445, 451, 466, 478, 502, 519, 529, 537, 562, 565, 573, 583, 586, 655, 667, 699, 717, 718, 753, 838
OFFSET
1,1
COMMENTS
Define an n-almost Sophie Germain almost-prime to be an n-almost prime all the prime factors of which are Sophie Germain primes. Note the contrast between this terminology and that of Sophie Germain n-almost primes, they are different.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(4) = 10 because 10 is the 4th semiprime both the prime factors of which are Sophie Germain primes.
MATHEMATICA
lst={}; Do[If[Plus@@Last/@FactorInteger[n]==2, a=First/@FactorInteger[n]; b=a[[1]]; k=0; If[Length[a]==2, c=a[[2]]; If[ !PrimeQ[2*c+1], k=1]]; If[PrimeQ[2*b+1]&&k==0, AppendTo[lst, n]]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 27 2009 *)
Module[{nn=100, sgp}, sgp=Select[Prime[Range[100]], PrimeQ[2#+1]&]; Select[ Union[ Times@@@Tuples[sgp, 2]], #<=10nn&]] (* Harvey P. Dale, May 08 2019 *)
PROG
(PARI) list(lim)=my(v=List(), u=v, t); forprime(p=2, lim\2, if(isprime(2*p+1), listput(u, p))); for(i=1, #u, for(j=1, i, t=u[i]*u[j]; if(t>lim, break); listput(v, t))); Set(v) \\ Charles R Greathouse IV, Feb 05 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Oct 24 2005
EXTENSIONS
Extended by Ray Chandler, Oct 31 2005
STATUS
approved
Pierpont semiprimes: semiprimes of the form (2^K)*(3^L)+1.
+10
10
4, 9, 10, 25, 33, 49, 55, 65, 82, 129, 145, 217, 289, 649, 865, 973, 1537, 1945, 2049, 2305, 3073, 4097, 4609, 5833, 6145, 6913, 8193, 8749, 9217, 11665, 13123, 15553, 20737, 23329, 24577, 27649, 31105, 34993, 41473, 62209, 69985, 73729, 78733
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Pierpont Prime
Eric Weisstein's World of Mathematics, Semiprime
FORMULA
{a(n)} = Intersection of {(2^K)*(3^L)+1} A055600 and semiprimes A001358. a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 2.
EXAMPLE
a(1) = 4 = (2^0)*(3^1)+1 = 2^2 hence the semiprime A001358(1).
a(2) = 9 = (2^3)*(3^0)+1 = 3^2 hence the semiprime A001358(3).
a(3) = 10 = (2^0)*(3^2)+1 = 2 * 5 hence the semiprime A001358(4).
a(4) = 25 = (2^3)*(3^1)+1 = 5^2 hence the semiprime A001358(9).
a(5) = 33 = (2^5)*(3^0)+1 = 3 * 11 hence the semiprime A001358(11).
a(6) = 49 = (2^4)*(3^1)+1 = 7^2 hence the semiprime A001358(17).
a(7) = 55 = (2^1)*(3^3)+1 = 5 * 11 hence the semiprime A001358(19).
MATHEMATICA
Select[Range[10^5], Plus @@ Last /@ FactorInteger[ # ] == 2 && Max @@ First /@ FactorInteger[ # - 1] < 5 &] (* Ray Chandler, Jan 24 2006 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 01 2005
STATUS
approved
Sophie Germain triprimes: k and 2k + 1 are both the product of 3 primes, not necessarily distinct.
+10
9
52, 76, 130, 171, 172, 212, 238, 318, 322, 325, 332, 357, 370, 387, 388, 402, 423, 430, 436, 442, 465, 507, 508, 556, 604, 610, 654, 665, 670, 710, 722, 747, 759, 762, 772, 775, 786, 790, 805, 814, 822, 826, 847, 874, 885, 902, 906, 916, 927, 942, 987, 1004
OFFSET
1,1
COMMENTS
There should also be triprime chains of length j analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. A triprime chain of length j is a sequence of triprimes a(1) < a(2) < ... < a(j) such that a(i+1) = 2*a(i) + 1 for i = 1, ..., j-1. The first of these are: Length 3: 332, 665, 1331 = 11^3; 387, 775, 1551 = 3 * 11 * 47.
LINKS
FORMULA
{a(n)} = a(n) is an element of A014612 and 2*a(n)+1 is an element of A014612.
EXAMPLE
n k = a(n) 2k + 1
= ================ ================
1 52 = 2^2 * 13 105 = 3 * 5 * 7
2 76 = 2^2 * 19 153 = 3^2 * 17
3 130 = 2 * 5 * 13 261 = 3^2 * 29
4 171 = 3^2 * 19 343 = 7^3
5 172 = 2^2 * 43 345 = 3 * 5 * 23
6 212 = 2^2 * 53 425 = 5^2 * 17
MATHEMATICA
fQ[n_]:=PrimeOmega[n] == 3 == PrimeOmega[2 n + 1]; Select[Range@1100, fQ] (* Vincenzo Librandi, Aug 19 2018 *)
PROG
(PARI) is(n)=bigomega(n)==3 && bigomega(2*n+1)==3 \\ Charles R Greathouse IV, Feb 01 2017
(Magma) Is3primes:=func<i|&+[d[2]: d in Factorization(i)] eq 3>; [n: n in [2..1200] | Is3primes(n) and Is3primes(2*n+1)]; // Vincenzo Librandi, Aug 19 2018
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 21 2005
EXTENSIONS
Extended by Ray Chandler, Oct 22 2005
Edited by Jon E. Schoenfield, Aug 18 2018
STATUS
approved
Sophie Germain 4-almost primes.
+10
9
40, 220, 580, 712, 808, 812, 904, 940, 1062, 1192, 1444, 1592, 1612, 1690, 1812, 1876, 2002, 2152, 2212, 2236, 2254, 2488, 2502, 2562, 2650, 2662, 2788, 3010, 3052, 3064, 3112, 3162, 3208, 3258, 3272, 3352, 3448, 3550, 3580, 3820, 3832, 3892, 3910, 4012
OFFSET
1,1
COMMENTS
4-almost primes P such that 2*P + 1 are also 4-almost primes. There should also be 4-almost prime chains of length k analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. A 4-almost prime chain of length k is a sequence of 4-almost primes a(1) < a(2) < ... < a(k) such that a(i+1) = 2*a(i) + 1 for i = 1, ..., k-1. There are no such chains beginning with integers under 1200.
LINKS
FORMULA
{a(n)} = a(n) is an element of A014613 and 2*a(n)+1 is an element of A014613.
EXAMPLE
n p 2*p+1
1 40 = 2^3 * 5 81 = 3^4
2 220 = 2^2 * 5 * 11 441 = 3^2 * 7^2
3 580 = 2^2 * 5 * 29 1161 = 3^3 * 43
4 712 = 2^3 * 89 1425 = 3 * 5^2 * 19
5 808 = 2^3 * 101 1617 = 3 * 7^2 * 11
6 812 = 2^2 * 7 * 29 1625 = 5^3 * 13
MATHEMATICA
Select[Range[5000], PrimeOmega[#]==PrimeOmega[2#+1]==4&] (* Harvey P. Dale, Nov 09 2011 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 22 2005
EXTENSIONS
Extended by Ray Chandler, Oct 22 2005
STATUS
approved
Semiprimes n such that 2*n - 1 is also a semiprime.
+10
7
25, 26, 33, 35, 39, 46, 58, 62, 65, 85, 93, 94, 111, 118, 119, 133, 134, 145, 146, 155, 161, 178, 183, 202, 206, 209, 214, 219, 226, 235, 237, 247, 249, 253, 259, 265, 267, 287, 291, 295, 299, 334, 335, 341, 361, 362, 377, 382, 386, 391, 393, 395, 407, 422
OFFSET
1,1
COMMENTS
Define an m-th degree Tomaszewski n-chain of the first (second) kind and length k to be a sequence of n-almost primes p(1) < p(2) < ... < p(k) such that s(i+1) = m*s(i) +(-) 1 for i = 1, ..., k-1. Notice that a 2nd degree Tomaszewski 1-chain of the first (second) kind is the familiar Cunningham chain of the first (second) kind.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
{a(n)} = a(n) is an element of A001358 and 2*a(n)-1 is an element of A001358.
EXAMPLE
n s(n) s*2-1
1 25 = 5^2 49 = 7^2
2 26 = 2 * 13 51 = 3 * 17
3 33 = 3 * 11 65 = 5 * 13
4 35 = 5 * 7 69 = 3 * 23
5 39 = 3 * 13 77 = 7 * 11
MATHEMATICA
Select[Range[500], PrimeOmega[#]==2&&PrimeOmega[2#-1]==2&] (* Harvey P. Dale, Aug 30 2015 *)
PROG
(PARI) is(n)=bigomega(n)==2 && bigomega(2*n-1)==2 \\ Charles R Greathouse IV, Jan 31 2017
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 21 2005
EXTENSIONS
Extended by Ray Chandler, Oct 22 2005
STATUS
approved
Semiprimes S such that 3*S - 1 is also a semiprime.
+10
6
9, 21, 22, 25, 26, 49, 62, 65, 69, 74, 85, 93, 121, 122, 129, 133, 141, 146, 158, 161, 166, 178, 185, 194, 205, 209, 221, 249, 253, 262, 265, 289, 298, 302, 305, 309, 346, 358, 361, 365, 381, 382, 386, 413, 446, 466, 473, 485, 489, 493, 501, 505, 514, 526, 553
OFFSET
1,1
COMMENTS
This is analogous to Sophie Germain semiprimes A111153 and the chains shown are analogous to Cunningham chains of the second kind and Tomaszewski chains of the second kind. Define a 3n-1 semiprime chain of length k. This is a sequence of semiprimes s(1) < s(2) < ... < s(k) such that s(i+1) = 3*s(i) - 1 for i = 1, ..., k-1. Length 3: 9, 26, 77; 49, 146, 437; 65, 194, 581; 129, 386, 1157; 158, 473, 1418; 187, 562, 1685. Length 4: 74, 221, 662, 1985; 122, 365, 1094, 3281. Length 5: 21, 62, 185, 554, 1661.
LINKS
FORMULA
{a(n)} = a(n) is an element of A001358 and 3*a(n)-1 is an element of A001358.
EXAMPLE
n s(n) 3 *s -1
1 9 = 3^2 26 = 2 * 13
2 21 = 3 * 7 62 = 2 * 31
3 22 = 2 * 11 65 = 5 * 13
4 25 = 5^2 74 = 2 * 37
5 26 = 2 * 13 77 = 7 * 11
6 49 = 7^2 146 = 2 * 73
MATHEMATICA
Select[Range[600], PrimeOmega[#]==PrimeOmega[3#-1]==2&] (* Harvey P. Dale, Jun 20 2018 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 21 2005
EXTENSIONS
Corrected and extended by Ray Chandler, Oct 22 2005
STATUS
approved
Squarefree positive integers k such that 2*k+1 is also squarefree.
+10
6
1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 17, 19, 21, 23, 26, 29, 30, 33, 34, 35, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 59, 61, 65, 66, 69, 70, 71, 74, 77, 78, 79, 82, 83, 86, 89, 91, 93, 95, 97, 101, 102, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119
OFFSET
1,2
COMMENTS
The asymptotic density of this sequence is (3/2)*A065474 = 0.4839511484... (Erdős and Ivić, 1987). - Amiram Eldar, Mar 02 2021
LINKS
Paul Erdős and Aleksandar Ivić, The distribution of values of a certain class of arithmetic functions at consecutive integers, Colloq. Math. Soc. János Bolyai, Vol. 51 (1987), pp. 45-91.
FORMULA
a(n) = (A117203(n) - 1)/2.
EXAMPLE
10 and 2*10 +1 = 21 are both squarefree, so 10 is in the sequence.
MATHEMATICA
sfQ[n_]:=SquareFreeQ[n]&&SquareFreeQ[2n+1]; Select [Range[200], sfQ] (* Harvey P. Dale, Mar 12 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Mar 02 2006
EXTENSIONS
More terms from Jonathan Vos Post, Mar 03 2006
Corrected and extended by Harvey P. Dale, Mar 12 2011
STATUS
approved
Semiprimes S such that 3*S + 1 is also a semiprime.
+10
5
15, 35, 38, 39, 55, 62, 82, 86, 87, 91, 106, 111, 115, 118, 119, 134, 142, 155, 159, 178, 187, 194, 218, 226, 235, 254, 259, 267, 278, 287, 295, 298, 299, 314, 319, 326, 327, 334, 335, 339, 371, 382, 386, 391, 395, 398, 411, 422, 427, 446, 451, 454, 502, 515
OFFSET
1,1
COMMENTS
This is analogous to Sophie Germain semiprimes A111153 and the chains shown are analogous to Cunningham chains of the first kind and Tomaszewski chains of the first kind. Define a 3n+1 semiprime chain of length k. This is a sequence of semiprimes s(1) < s(2) < ... < s(k) such that s(i+1) = 3*s(i) + 1 for i = 1, ..., k-1. Length 3: 111, 334, 1003; 142, 427, 1282. Length 4: 35, 106, 319, 958; 86, 259, 778, 2335; 187, 562, 1687, 5062.
FORMULA
{a(n)} = a(n) is an element of A001358 and 3*a(n)+1 is an element of A001358.
EXAMPLE
n s(n) 3*s + 1
1 15 = 3 * 5 46 = 2 * 23
2 35 = 5 * 7 106 = 2 * 53
3 38 = 2 * 19 115 = 5 * 23
4 39 = 3 * 13 118 = 2 * 59
5 55 = 5 * 11 166 = 2 * 83
6 62 = 2 * 31 187 = 11 * 17
MAPLE
q:= n-> andmap(x-> 2=numtheory[bigomega](x), [n, 3*n+1]):
select(q, [$4..515])[]; # Alois P. Heinz, May 02 2024
MATHEMATICA
Select[Range[515], PrimeOmega[#]==2&&PrimeOmega[3*#+1]==2&] (* James C. McMahon, May 01 2024 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Oct 21 2005
EXTENSIONS
Extended by Ray Chandler, Oct 22 2005
STATUS
approved

Search completed in 0.014 seconds