[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a105885 -id:a105885
     Sort: relevance | references | number | modified | created      Format: long | short | data
Rational primes that decompose in the field Q(sqrt(-13)).
+10
5
7, 11, 17, 19, 29, 31, 47, 53, 59, 61, 67, 71, 83, 101, 113, 151, 157, 163, 167, 173, 181, 223, 227, 233, 239, 257, 269, 271, 277, 307, 313, 331, 337, 359, 373, 379, 383, 389, 431, 433, 463, 479, 487, 499, 521, 569, 587, 601, 619, 631, 641, 643, 653, 673, 677, 683, 691
OFFSET
1,1
COMMENTS
In general, primes that decompose in Q(sqrt(-p prime)) are congruent modulo 4p to t(-1)^[t^(phi(p)/2) mod p = 1 XOR t mod min(e,4) = 1], where t are the totatives of 2p, e is the even part of phi(p), and [P] returns 1 if P else 0. In other words, if phi(p) is at least twice even, then the t are signed so that the quadratic residuosity of t mod p aligns with the congruence of +-t mod 4 to 1--the modulus 4p is thence irreducible--; if only once, then the signature simply indicates quadratic residues modulo p. The imbalance of signs in either flank (t < p, t > p) of the signature also gives the class number of Q(sqrt(-p)), up to an excess factor of 3 if p == 3 (mod 8) but != 3. [E.g., for p = 13 we have +--+++ or +++--+, so the class number of Q(sqrt(-13)) = 2; for p = 11 == 3 (mod 8) we have +++-+ or -+---, so the class number of Q(sqrt(-11)) = 3/3 = 1.] - Travis Scott, Jan 05 2023
FORMULA
a(n) ~ 2n log n. - Charles R Greathouse IV, Mar 18 2018
Primes == {1, 7, 9, 11, 15, 17, 19, 25, 29, 31, 47, 49} (mod 52). - Travis Scott, Jan 05 2023
MAPLE
Load the Maple program HH given in A296920. Then run HH(-13, 200); This produces A296926, A296927, A296928, A105885.
MATHEMATICA
Select[Prime[Range[125]], KroneckerSymbol[-13, #] == 1 &] (* Amiram Eldar, Nov 17 2023 *)
PROG
(PARI) list(lim)=my(v=List()); forprime(p=5, lim, if(kronecker(-13, p)==1, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Mar 18 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 26 2017
STATUS
approved
Inert rational primes in the field Q(sqrt(-13)).
+10
4
3, 5, 23, 37, 41, 43, 73, 79, 89, 97, 103, 107, 109, 127, 131, 137, 139, 149, 179, 191, 193, 197, 199, 211, 229, 241, 251, 263, 281, 283, 293, 311, 317, 347, 349, 353, 367, 397, 401, 409, 419, 421, 439, 443, 449, 457, 461, 467, 491, 503, 509, 523, 541, 547, 557, 563
OFFSET
1,1
MAPLE
Load the Maple program HH given in A296920. Then run HH(-13, 200); This produces A296926, A296927, A296928, A105885.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 26 2017
STATUS
approved
Primes p such that Legendre(-13,p) = 0 or 1.
+10
4
7, 11, 13, 17, 19, 29, 31, 47, 53, 59, 61, 67, 71, 83, 101, 113, 151, 157, 163, 167, 173, 181, 223, 227, 233, 239, 257, 269, 271, 277, 307, 313, 331, 337, 359, 373, 379, 383, 389, 431, 433, 463, 479, 487, 499, 521, 569, 587, 601, 619, 631
OFFSET
1,1
COMMENTS
Primes == 1, 7, 9, 11, 13, 15, 17, 19, 25, 29, 31, 47, or 49 (mod 52). - Robert Israel, Dec 27 2017
LINKS
MAPLE
Load the Maple program HH given in A296920. Then run HH(-13, 200); This produces A296926, A296927, A296928, A105885.
select(isprime, [seq(seq(52*i+j, j=[1, 7, 9, 11, 13, 15, 17, 19, 25, 29, 31, 47, 49]), i=0..50)]); # Robert Israel, Dec 27 2017
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 26 2017
STATUS
approved
Inert rational primes in the field Q(sqrt(-21)).
+10
0
13, 29, 43, 47, 53, 59, 61, 67, 73, 79, 83, 97, 113, 127, 131, 137, 149, 151, 157, 163, 167, 181, 197, 211, 227, 229, 233, 241, 251, 281, 311, 313, 317, 331, 349, 379, 383, 389, 397, 401, 409, 419, 433, 449, 463, 467, 479, 487, 499, 503, 547, 557, 563, 569, 571, 577, 587
OFFSET
1,1
COMMENTS
Primes p such that Legendre(-21,p) = -1.
MATHEMATICA
Select[Range[3, 600], PrimeQ[#] && JacobiSymbol[-21, #]==-1 &] (* Stefano Spezia, Feb 04 2024 *)
PROG
(SageMath) [p for p in prime_range(3, 600) if legendre_symbol(-21, p) == -1]
CROSSREFS
Cf. inert rational primes in the imaginary quadratic field Q(sqrt(-d)) for the first squarefree positive integers d: A002145 (1), A003628 (2), A003627 (3), A003626 (5), A191059 (6), A003625 (7), A296925 (10), A191060 (11), A105885 (13), A191061 (14), A191062 (15), A296930 (17), A191063 (19), this sequence (21), A191064 (22), A191065 (23).
KEYWORD
nonn
AUTHOR
Dimitris Cardaris, Feb 03 2024
STATUS
approved

Search completed in 0.005 seconds