[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a093766 -id:a093766
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numerators of partial sums of the Madhava series for Pi/(2*sqrt(3)) = A093766.
+20
1
1, 8, 41, 856, 23147, 254512, 3309041, 29780368, 168757087, 28857376792, 259716622073, 5973480691064, 89602217802389, 7257779456082784, 210475605899597261, 6524743766713282016, 19574231315333822573, 6524743770186190936, 2172739675639135323463, 19554657080276529569192
OFFSET
0,2
COMMENTS
This Madhava series results from the arctan series for tan(Pi/6) = sqrt(3)/3 = A020760.
REFERENCES
L. B. W. Jolley, Summation of Series, Dover (1961), eq. (273), pp. 16 and 17.
Ian Stewart, Grössen der Mathematik, Rowohlt Tachenbuch Verlag, Nr. 63394, 2020, p. 74. [English Original: Significant Figures. Lives and Works of Traiblazing Mathematicians, Profile Books, London, 2017]
FORMULA
a(n) = numerator(Sum_{j=0..n} (-1)^j/((2*j+1)*3^j)), for n >= 0.
EXAMPLE
The partial sums begin: 1/1, 8/9, 41/45, 856/945, 23147/25515, 254512/280665, 3309041/3648645, 29780368/32837805, 168757087/186080895, ...
For n = 100 the partial sum is 0.9068996821171089252970391288210778661420331240463726... compared to 0.9068996821171089252970391288210778661420331240463702...(the first 53 digits coincide).
MATHEMATICA
Numerator @ Accumulate @ Table[(-1)^j/((2*j + 1)*3^j), {j, 0, 20}] (* Amiram Eldar, Apr 08 2022 *)
PROG
(PARI) a(n) = numerator(sum(j=0, n, (-1)^j/((2*j+1)*3^j))); \\ Michel Marcus, Apr 08 2022
CROSSREFS
Cf. A352398 (denominators).
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Apr 07 2022
STATUS
approved
Denominators of partial sums of the Madhava series for Pi/(2*sqrt(3)) = A093766.
+20
1
1, 9, 45, 945, 25515, 280665, 3648645, 32837805, 186080895, 31819833045, 286378497405, 6586705440315, 98800581604725, 8002847109982725, 232082566189499025, 7194559551874469775, 21583678655623409325, 7194559551874469775, 2395788330774198435075, 21562094976967785915675
OFFSET
0,2
COMMENTS
For a comment and references see A352397.
FORMULA
a(n) = denominator(Sum_{j=0..n} (-1)^j/((2*j+1)*3^j)), for n >= 0.
MATHEMATICA
Denominator @ Accumulate @ Table[(-1)^j/((2*j + 1)*3^j), {j, 0, 20}] (* Amiram Eldar, Apr 08 2022 *)
PROG
(PARI) a(n) = denominator(sum(j=0, n, (-1)^j/((2*j+1)*3^j))); \\ Michel Marcus, Apr 08 2022
CROSSREFS
Cf. A352397 (numerators).
Cf. A093766.
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Apr 07 2022
STATUS
approved
Octagonal numbers: n*(3*n-2). Also called star numbers.
(Formerly M4493 N1901)
+10
262
0, 1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, 408, 481, 560, 645, 736, 833, 936, 1045, 1160, 1281, 1408, 1541, 1680, 1825, 1976, 2133, 2296, 2465, 2640, 2821, 3008, 3201, 3400, 3605, 3816, 4033, 4256, 4485, 4720, 4961, 5208, 5461
OFFSET
0,3
COMMENTS
From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0; then a(n) is the sequence found by reading the line from 0 in the direction 0,1,....
The spiral begins:
.
85--84--83--82--81--80
/ \
86 56--55--54--53--52 79
/ / \ \
87 57 33--32--31--30 51 78
/ / / \ \ \
88 58 34 16--15--14 29 50 77
/ / / / \ \ \ \
89 59 35 17 5---4 13 28 49 76
/ / / / / \ \ \ \ \
90 60 36 18 6 0 3 12 27 48 75
/ / / / / / / / / / /
91 61 37 19 7 1---2 11 26 47 74
\ \ \ \ \ . / / / /
92 62 38 20 8---9--10 25 46 73
\ \ \ \ . / / /
93 63 39 21--22--23--24 45 72
\ \ \ . / /
94 64 40--41--42--43--44 71
\ \ . /
95 65--66--67--68--69--70
\ .
96
.
From Lekraj Beedassy, Oct 02 2003: (Start)
Also the number of distinct three-cell blocks that may be removed out of A000217(n+1) square cells arranged in a stepping triangular array of side (n+1). A 5-layer triangular array of square cells, for instance, has vertices outlined thus:
x x
x x x
x x x x
x x x x x
x x x x x x
x x x x x x (End)
First derivative at n of A045991. - Ross La Haye, Oct 23 2004
Starting from n=1, the sequence corresponds to the Wiener index of K_{n,n} (the complete bipartite graph wherein each independent set has n vertices). - Kailasam Viswanathan Iyer, Mar 11 2009
Number of divisors of 24^(n-1) for n > 0 (cf A009968). - J. Lowell, Aug 30 2008
a(n) = A001399(6n-5), number of partitions of 6*n - 5 into parts < 4. For example a(2)=8 and partitions of 6*2 - 5 = 7 into parts < 4 are: [1,1,1,1,1,1,1], [1,1,1,1,1,2],[1,1,1,1,3], [1,1,1,2,2], [1,1,2,3], [1,2,2,2], [1,3,3], [2,2,3]. - Adi Dani, Jun 07 2011
Also, sequence found by reading the line from 0 in the direction 0, 8, ..., and the parallel line from 1 in the direction 1, 21, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Sep 10 2011
Partial sums give A002414. - Omar E. Pol, Jan 12 2013
Generate a Pythagorean triple using Euclid's formula with (n, n-1) to give A,B,C. a(n) = B + (A + C)/2. - J. M. Bergot, Jul 13 2013
The number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n-4; {1, 2n-2, 3, 2n-2, 1, 18n-8}]. For n=1, this collapses to [5; {5, 10}]. - Magus K. Chu, Oct 10 2022
a(n)*a(n+1) + 1 = (3n^2 + n - 1)^2. In general, a(n)*a(n+k) + k^2 = (3n^2 + (3k-2)n - k)^2. - Charlie Marion, May 23 2023
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.
LINKS
Raghavendra N. Bhat, Cristian Cobeli, and Alexandru Zaharescu, A lozenge triangulation of the plane with integers, arXiv:2403.10500 [math.NT], 2024.
Francesco Brenti and Paolo Sentinelli, Wachs permutations, Bruhat order and weak order, arXiv:2212.04932 [math.CO], 2022.
Cesar Ceballos and Viviane Pons, The s-weak order and s-permutahedra II: The combinatorial complex of pure intervals, arXiv:2309.14261 [math.CO], 2023. See p. 42.
C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
Milan Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
R. Kemp, On the number of words in the language {w in Sigma* | w = w^R }^2, Discrete Math., 40 (1982), 225-234. See Table 1.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
Kaie Kubjas, Luca Sodomaco, and Elias Tsigaridas, Exact solutions in low-rank approximation with zeros, arXiv:2010.15636 [math.AG], 2020.
Viktor Levandovskyy, Christoph Koutschan, and Oleksandr Motsak, On Two-generated Non-commutative Algebras Subject to the Affine Relation, arXiv:1108.1108 [cs.SC], 2011.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
Eric Weisstein's World of Mathematics, Octagonal Number.
Eric Weisstein's World of Mathematics, Wiener Index.
FORMULA
a(n) = n*(3*n-2).
a(n) = (3n-2)*(3n-1)*(3n)/((3n-1) + (3n-2) + (3n)), i.e., (the product of three consecutive numbers)/(their sum). a(1) = 1*2*3/(1+2+3), a(2) = 4*5*6/(4+5+6), etc. - Amarnath Murthy, Aug 29 2002
E.g.f.: exp(x)*(x+3*x^2). - Paul Barry, Jul 23 2003
G.f.: x*(1+5*x)/(1-x)^3. Simon Plouffe in his 1992 dissertation
a(n) = Sum_{k=1..n} (5*n - 4*k). - Paul Barry, Sep 06 2005
a(n) = n + 6*A000217(n-1). - Floor van Lamoen, Oct 14 2005
a(n) = C(n+1,2) + 5*C(n,2).
Starting (1, 8, 21, 40, 65, ...) = binomial transform of [1, 7, 6, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=8. - Jaume Oliver Lafont, Dec 02 2008
a(n) = A000578(n) - A007531(n). - Reinhard Zumkeller, Sep 18 2009
a(n) = a(n-1) + 6*n - 5 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
a(n) = 2*a(n-1) - a(n-2) + 6. - Ant King, Sep 01 2011
a(n) = A000217(n) + 5*A000217(n-1). - Vincenzo Librandi, Nov 20 2010
a(n) = (A185212(n) - 1) / 4. - Reinhard Zumkeller, Dec 20 2012
a(n) = A174709(6n). - Philippe Deléham, Mar 26 2013
a(n) = (2*n-1)^2 - (n-1)^2. - Ivan N. Ianakiev, Apr 10 2013
a(6*a(n) + 16*n + 1) = a(6*a(n) + 16*n) + a(6*n + 1). - Vladimir Shevelev, Jan 24 2014
a(0) = 0, a(n) = Sum_{k=0..n-1} A005408(A051162(n-1,k)), n >= 1. - L. Edson Jeffery, Jul 28 2014
Sum_{n>=1} 1/a(n) = (sqrt(3)*Pi + 9*log(3))/12 = 1.2774090575596367311949534921... . - Vaclav Kotesovec, Apr 27 2016
From Ilya Gutkovskiy, Jul 29 2016: (Start)
Inverse binomial transform of A084857.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(2*sqrt(3)) = A093766. (End)
a(n) = n * A016777(n-1) = A053755(n) - A000290(n+1). - Bruce J. Nicholson, Aug 10 2017
Product_{n>=2} (1 - 1/a(n)) = 3/4. - Amiram Eldar, Jan 21 2021
P(4k+4,n) = ((k+1)*n - k)^2 - (k*n - k)^2 where P(m,n) is the n-th m-gonal number (a generalization of the Apr 10 2013 formula, a(n) = (2*n-1)^2 - (n-1)^2). - Charlie Marion, Oct 07 2021
From Leo Tavares, Oct 31 2021: (Start)
a(n) = A000290(n) + 4*A000217(n-1). See Square Rays illustration.
a(n) = A000290(n) + A046092(n-1)
a(n) = A000384(n) + 2*A000217(n-1). See Twin Rectangular Rays illustration.
a(n) = A000384(n) + A002378(n-1)
a(n) = A003154(n) - A045944(n-1). See Star Rows illustration. (End)
MAPLE
A000567 := proc(n)
n*(3*n-2) ;
end proc:
seq(A000567(n), n=1..50) ;
MATHEMATICA
Table[n (3 n - 2), {n, 0, 50}] (* Harvey P. Dale, May 06 2012 *)
Table[PolygonalNumber[RegularPolygon[8], n], {n, 0, 43}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
PolygonalNumber[8, Range[0, 20]] (* Eric W. Weisstein, Sep 07 2017 *)
LinearRecurrence[{3, -3, 1}, {1, 8, 21}, {0, 20}] (* Eric W. Weisstein, Sep 07 2017 *)
PROG
(PARI) a(n)=n*(3*n-2) \\ Charles R Greathouse IV, Jun 10 2011
(PARI) vector(50, n, n--; n*(3*n-2)) \\ G. C. Greubel, Nov 15 2018
(GAP) List([0..50], n -> n*(3*n-2)); # G. C. Greubel, Nov 15 2018
(Haskell)
a000567 n = n * (3 * n - 2) -- Reinhard Zumkeller, Dec 20 2012
(Sage) [n*(3*n-2) for n in range(50)] # G. C. Greubel, Nov 15 2018
(Python) # Intended to compute the initial segment of the sequence, not isolated terms.
def aList():
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 6, y + 6
A000567 = aList()
print([next(A000567) for i in range(49)]) # Peter Luschny, Aug 04 2019
(Python) [n*(3*n-2) for n in range(50)] # Gennady Eremin, Mar 10 2022
(Magma) [n*(3*n-2) : n in [0..50]]; // Wesley Ivan Hurt, Oct 10 2021
CROSSREFS
Cf. A014641, A014642, A014793, A014794, A001835, A016777, A045944, A093563 ((6, 1) Pascal, column m=2). A016921 (differences).
Cf. A005408 (the odd numbers).
KEYWORD
nonn,easy,nice,changed
EXTENSIONS
Incorrect example removed by Joerg Arndt, Mar 11 2010
STATUS
approved
Numbers congruent to 1 or 5 mod 6.
+10
230
1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 169, 173, 175
OFFSET
1,2
COMMENTS
Numbers n such that phi(4n) = phi(3n). - Benoit Cloitre, Aug 06 2003
Or, numbers relatively prime to 2 and 3, or coprime to 6, or having only prime factors >= 5; also known as 5-rough numbers. (Edited by M. F. Hasler, Nov 01 2014: merged with comments from Zak Seidov, Apr 26 2007 and Michael B. Porter, Oct 09 2009)
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 38 ).
Numbers k such that k mod 2 = 1 and (k+1) mod 3 <> 1. - Klaus Brockhaus, Jun 15 2004
Also numbers n such that the sum of the squares of the first n integers is divisible by n, or A000330(n) = n*(n+1)*(2*n+1)/6 is divisible by n. - Alexander Adamchuk, Jan 04 2007
Numbers n such that the sum of squares of n consecutive integers is divisible by n, because A000330(m+n) - A000330(m) = n*(n+1)*(2*n+1)/6 + n*(m^2+n*m+m) is divisible by n independent of m. - Kaupo Palo, Dec 10 2016
A126759(a(n)) = n + 1. - Reinhard Zumkeller, Jun 16 2008
Terms of this sequence (starting from the second term) are equal to the result of the expression sqrt(4!*(k+1) + 1) - but only when this expression yields integral values (that is when the parameter k takes values, which are terms of A144065). - Alexander R. Povolotsky, Sep 09 2008
For n > 1: a(n) is prime if and only if A075743(n-2) = 1; a(2*n-1) = A016969(n-1), a(2*n) = A016921(n-1). - Reinhard Zumkeller, Oct 02 2008
A156543 is a subsequence. - Reinhard Zumkeller, Feb 10 2009
Numbers n such that ChebyshevT(x, x/2) is not an integer (is integer/2). - Artur Jasinski, Feb 13 2010
If 12*k + 1 is a perfect square (k = 0, 2, 4, 10, 14, 24, 30, 44, ... = A152749) then the square root of 12*k + 1 = a(n). - Gary Detlefs, Feb 22 2010
A089128(a(n)) = 1. Complement of A047229(n+1) for n >= 1. See A164576 for corresponding values A175485(a(n)). - Jaroslav Krizek, May 28 2010
Cf. property described by Gary Detlefs in A113801 and in Comment: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (with h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 6). Also a(n)^2 - 1 == 0 (mod 12). - Bruno Berselli, Nov 05 2010 - Nov 17 2010
Numbers n such that ( Sum_{k = 1..n} k^14 ) mod n = 0. (Conjectured) - Gary Detlefs, Dec 27 2011
From Peter Bala, May 02 2018: (Start)
The above conjecture is true. Apply Ireland and Rosen, Proposition 15.2.2. with m = 14 to obtain the congruence 6*( Sum_{k = 1..n} k^14 )/n = 7 (mod n), true for all n >= 1. Suppose n is coprime to 6, then 6 is a unit in Z/nZ, and it follows from the congruence that ( Sum_{k = 1..n} k^14 )/n is an integer. On the other hand, if either 2 divides n or 3 divides n then the congruence shows that ( Sum_{k = 1..n} k^14 )/n cannot be integral. (End)
A126759(a(n)) = n and A126759(m) < n for m < a(n). - Reinhard Zumkeller, May 23 2013
(a(n-1)^2 - 1)/24 = A001318(n), the generalized pentagonal numbers. - Richard R. Forberg, May 30 2013
Numbers k for which A001580(k) is divisible by 3. - Bruno Berselli, Jun 18 2014
Numbers n such that sigma(n) + sigma(2n) = sigma(3n). - Jahangeer Kholdi and Farideh Firoozbakht, Aug 15 2014
a(n) are values of k such that Sum_{m = 1..k-1} m*(k-m)/k is an integer. Sums for those k are given by A062717. Also see Detlefs formula below based on A062717. - Richard R. Forberg, Feb 16 2015
a(n) are exactly those positive integers m such that the sequence b(n) = n*(n + m)*(n + 2*m)/6 is integral, and also such that the sequence c(n) = n*(n + m)*(n + 2*m)*(n + 3*m)/24 is integral. Cf. A007775. - Peter Bala, Nov 13 2015
Along with 2, these are the numbers k such that the k-th Fibonacci number is coprime to every Lucas number. - Clark Kimberling, Jun 21 2016
This sequence is the Engel expansion of 1F2(1; 5/6, 7/6; 1/36) + 1F2(1; 7/6, 11/6; 1/36)/5. - Benedict W. J. Irwin, Dec 16 2016
The sequence a(n), n >= 4 is generated by the successor of the pair of polygonal numbers {P_s(4) + 1, P_(2*s - 1)(3) + 1}, s >= 3. - Ralf Steiner, May 25 2018
The asymptotic density of this sequence is 1/3. - Amiram Eldar, Oct 18 2020
Also, the only vertices in the odd Collatz tree A088975 that are branch values to other odd nodes t == 1 (mod 2) of A005408. - Heinz Ebert, Apr 14 2021
From Flávio V. Fernandes, Aug 01 2021: (Start)
For any two terms j and k, the product j*k is also a term (the same property as p^n and smooth numbers).
From a(2) to a(phi(A033845(n))), or a((A033845(n))/3), the terms are the totatives of the A033845(n) itself. (End)
Also orders n for which cyclic and semicyclic diagonal Latin squares exist (see A123565 and A342990). - Eduard I. Vatutin, Jul 11 2023
If k is in the sequence, then k*2^m + 3 is also in the sequence, for all m > 0. - Jules Beauchamp, Aug 29 2024
REFERENCES
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1980.
LINKS
Andreas Enge, William Hart, and Fredrik Johansson, Short addition sequences for theta functions, arXiv:1608.06810 [math.NT], 2016-2018.
L. B. W. Jolley, Summation of Series, Dover, 1961
Cedric A. B. Smith, Prime factors and recurring duodecimals, Math. Gaz. 59 (408) (1975) 106-109.
William A. Stein's The Modular Forms Database, PARI-readable dimension tables for Gamma_0(N).
Eric Weisstein's World of Mathematics, Rough Number.
Eric Weisstein's World of Mathematics, Pi Formulas. [Jaume Oliver Lafont, Oct 23 2009]
FORMULA
a(n) = (6*n + (-1)^n - 3)/2. - Antonio Esposito, Jan 18 2002
a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4. - Roger L. Bagula
a(n) = 3*n - 1 - (n mod 2). - Zak Seidov, Jan 18 2006
a(1) = 1 then alternatively add 4 and 2. a(1) = 1, a(n) = a(n-1) + 3 + (-1)^n. - Zak Seidov, Mar 25 2006
1 + 1/5^2 + 1/7^2 + 1/11^2 + ... = Pi^2/9 [Jolley]. - Gary W. Adamson, Dec 20 2006
For n >= 3 a(n) = a(n-2) + 6. - Zak Seidov, Apr 18 2007
From R. J. Mathar, May 23 2008: (Start)
Expand (x+x^5)/(1-x^6) = x + x^5 + x^7 + x^11 + x^13 + ...
O.g.f.: x*(1+4*x+x^2)/((1+x)*(1-x)^2). (End)
a(n) = 6*floor(n/2) - 1 + 2*(n mod 2). - Reinhard Zumkeller, Oct 02 2008
1 + 1/5 - 1/7 - 1/11 + + - - ... = Pi/3 = A019670 [Jolley eq (315)]. - Jaume Oliver Lafont, Oct 23 2009
a(n) = ( 6*A062717(n)+1 )^(1/2). - Gary Detlefs, Feb 22 2010
a(n) = 6*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i), with n > 1. - Bruno Berselli, Nov 05 2010
a(n) = 6*n - a(n-1) - 6 for n>1, a(1) = 1. - Vincenzo Librandi, Nov 18 2010
Sum_{n >= 1} (-1)^(n+1)/a(n) = A093766 [Jolley eq (84)]. - R. J. Mathar, Mar 24 2011
a(n) = 6*floor(n/2) + (-1)^(n+1). - Gary Detlefs, Dec 29 2011
a(n) = 3*n + ((n+1) mod 2) - 2. - Gary Detlefs, Jan 08 2012
a(n) = 2*n + 1 + 2*floor((n-2)/2) = 2*n - 1 + 2*floor(n/2), leading to the o.g.f. given by R. J. Mathar above. - Wolfdieter Lang, Jan 20 2012
1 - 1/5 + 1/7 - 1/11 + - ... = Pi*sqrt(3)/6 = A093766 (L. Euler). - Philippe Deléham, Mar 09 2013
1 - 1/5^3 + 1/7^3 - 1/11^3 + - ... = Pi^3*sqrt(3)/54 (L. Euler). - Philippe Deléham, Mar 09 2013
gcd(a(n), 6) = 1. - Reinhard Zumkeller, Nov 14 2013
a(n) = sqrt(6*n*(3*n + (-1)^n - 3)-3*(-1)^n + 5)/sqrt(2). - Alexander R. Povolotsky, May 16 2014
a(n) = 3*n + 6/(9*n mod 6 - 6). - Mikk Heidemaa, Feb 05 2016
From Mikk Heidemaa, Feb 11 2016: (Start)
a(n) = 2*floor(3*n/2) - 1.
a(n) = A047238(n+1) - 1. (suggested by Michel Marcus) (End)
E.g.f.: (2 + (6*x - 3)*exp(x) + exp(-x))/2. - Ilya Gutkovskiy, Jun 18 2016
From Bruno Berselli, Apr 27 2017: (Start)
a(k*n) = k*a(n) + (4*k + (-1)^k - 3)/2 for k>0 and odd n, a(k*n) = k*a(n) + k - 1 for even n. Some special cases:
k=2: a(2*n) = 2*a(n) + 3 for odd n, a(2*n) = 2*a(n) + 1 for even n;
k=3: a(3*n) = 3*a(n) + 4 for odd n, a(3*n) = 3*a(n) + 2 for even n;
k=4: a(4*n) = 4*a(n) + 7 for odd n, a(4*n) = 4*a(n) + 3 for even n;
k=5: a(5*n) = 5*a(n) + 8 for odd n, a(5*n) = 5*a(n) + 4 for even n, etc. (End)
From Antti Karttunen, May 20 2017: (Start)
a(A273669(n)) = 5*a(n) = A084967(n).
a((5*n)-3) = A255413(n).
A126760(a(n)) = n. (End)
a(2*m) = 6*m - 1, m >= 1; a(2*m + 1) = 6*m + 1, m >= 0. - Ralf Steiner, May 17 2018
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(3) (A002194).
Product_{n>=2} (1 + (-1)^n/a(n)) = Pi/3 (A019670). (End)
EXAMPLE
G.f. = x + 5*x^2 + 7*x^3 + 11*x^4 + 13*x^5 + 17*x^6 + 19*x^7 + 23*x^8 + ...
MAPLE
seq(seq(6*i+j, j=[1, 5]), i=0..100); # Robert Israel, Sep 08 2014
MATHEMATICA
Select[Range[200], MemberQ[{1, 5}, Mod[#, 6]] &] (* Harvey P. Dale, Aug 27 2013 *)
a[n_] := (6 n + (-1)^n - 3)/2; a[rem156, 60] (* Robert G. Wilson v, May 26 2014 from a suggestion by N. J. A. Sloane *)
Flatten[Table[6n + {1, 5}, {n, 0, 24}]] (* Alonso del Arte, Feb 06 2016 *)
Table[2*Floor[3*n/2] - 1, {n, 1000}] (* Mikk Heidemaa, Feb 11 2016 *)
PROG
(PARI) isA007310(n) = gcd(n, 6)==1 \\ Michael B. Porter, Oct 09 2009
(PARI) A007310(n)=n\2*6-(-1)^n \\ M. F. Hasler, Oct 31 2014
(PARI) \\ given an element from the sequence, find the next term in the sequence.
nxt(n) = n + 9/2 - (n%6)/2 \\ David A. Corneth, Nov 01 2016
(Sage) [i for i in range(150) if gcd(6, i) == 1] # Zerinvary Lajos, Apr 21 2009
(Haskell)
a007310 n = a007310_list !! (n-1)
a007310_list = 1 : 5 : map (+ 6) a007310_list
-- Reinhard Zumkeller, Jan 07 2012
(Magma) [n: n in [1..250] | n mod 6 in [1, 5]]; // Vincenzo Librandi, Feb 12 2016
(GAP) Filtered([1..150], n->n mod 6=1 or n mod 6=5); # Muniru A Asiru, Dec 19 2018
(Python)
def A007310(n): return (n+(n>>1)<<1)-1 # Chai Wah Wu, Oct 10 2023
CROSSREFS
A005408 \ A016945. Union of A016921 and A016969; union of A038509 and A140475. Essentially the same as A038179. Complement of A047229. Subsequence of A186422.
Cf. A000330, A001580, A002194, A019670, A032528 (partial sums), A038509 (subsequence of composites), A047209, A047336, A047522, A056020, A084967, A090771, A091998, A144065, A175885-A175887.
For k-rough numbers with other values of k, see A000027, A005408, A007775, A008364-A008366, A166061, A166063.
Cf. A126760 (a left inverse).
Row 3 of A260717 (without the initial 1).
Cf. A105397 (first differences).
KEYWORD
nonn,easy,changed
AUTHOR
C. Christofferson (Magpie56(AT)aol.com)
STATUS
approved
Product t2(q^d); d | 3, where t2 = theta2(q) / (2 * q^(1/4)).
+10
39
1, 1, 0, 2, 1, 0, 2, 0, 0, 2, 2, 0, 1, 1, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 3, 0, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 0, 4, 2, 0, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2, 0, 1, 0, 0, 2, 2, 0, 4, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 2, 0
OFFSET
0,4
COMMENTS
Number of solutions of 8*n + 4 = x^2 + 3*y^2 in positive odd integers. - Michael Somos, Sep 18 2004
Half the number of integer solutions of 4*n + 2 = x^2 + y^2 + z^2 where 0 = x + y + z and x and y are odd. - Michael Somos, Jul 03 2011
Given g.f. A(x), then q^(1/2) * 2 * A(q) is denoted phi_1(z) where q = exp(Pi i z) in Conway and Sloane.
Half of theta series of planar hexagonal lattice (A2) with respect to an edge.
Bisection of A002324. Number of ways of writing n as a sum of a triangular plus three times a triangular number [Hirschhorn]. - R. J. Mathar, Mar 23 2011
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
REFERENCES
Burce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 223 Entry 3(i).
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 1999, p. 103. See Eq. (13).
Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.27).
LINKS
Michael D. Hirschhorn, Three classical results on representations of a number, Sem. Lotharingien de Combinat. S42 (1999), B42f.
Michael D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of q^(-1/2) * (eta(q^2) * eta(q^6))^2 / (eta(q) * eta(q^3)) in powers of q. - Michael Somos, Apr 18 2004
Expansion of q^(-1) * (a(q) - a(q^4)) / 6 in powers of q^2 where a() is a cubic AGM theta function. - Michael Somos, Oct 24 2006
Expansion of psi(x) * psi(x^3) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jul 03 2011
Euler transform of period 6 sequence [ 1, -1, 2, -1, 1, -2, ...]. - Michael Somos, Apr 18 2004
From Michael Somos, Sep 18 2004: (Start)
Given g.f. A(x), then B(x) = (x * A(x^2))^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 + 4*u*v*w + 16*v*w^2 - 8*w*v^2 - w*u^2.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1, b(p^e) = (1 + (-1)^e) / 2 if p==5 (mod 6) otherwise b(p^e) = e+1. (Clarification: the g.f. A(x) is not the primary function of interest, but rather B(x) = x * A(x^2), which is an eta-quotient and is the generating function of a multiplicative sequence.)
G.f.: (Sum_{j>0} x^((j^2 - j) / 2)) * (Sum_{k>0} x^(3(k^2 - k) / 2)) = Product_{k>0} (1 + x^k) * (1 - x^(2*k)) * (1 + x^(3*k)) * (1 - x^(6*k)).
G.f.: Sum_{k>=0} a(k) * x^(2*k + 1) = Sum_{k>0} x^k * (1 - x^k) * (1 - x^(4*k)) * (1 - x^(5*k)) / (1 - x^(12*k)). (End)
G.f.: s(4)^2*s(12)^2/(s(2)*s(6)), where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine]
G.f.: Sum_{k>=0} a(k) * x^(2*k + 1) = Sum_{k>0} x^k / (1 + x^k + x^(2*k)) - x^(4*k) / (1 + x^(4*k) + x^(8*k)). - Michael Somos, Nov 04 2005
a(n) = A002324(2*n + 1) = A035178(2*n + 1) = A091393(2*n + 1) = A093829(2*n + 1) = A096936(2*n + 1) = A112298(2*n + 1) = A113447(2*n + 1) = A113661(2*n + 1) = A113974(2*n + 1) = A115979(2*n + 1) = A122860(2*n + 1) = A123331(2*n + 1) = A123484(2*n + 1) = A136748(2*n + 1) = A137608(2*n + 1). A005881(n) = 2*a(n).
6 * a(n) = A004016(6*n + 3). - Michael Somos, Mar 06 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Nov 23 2023
EXAMPLE
G.f. = 1 + x + 2*x^3 + x^4 + 2*x^6 + 2*x^9 + 2*x^10 + x^12 + x^13 + 2*x^15 + ...
G.f. = q + q^3 + 2*q^7 + q^9 + 2*q^13 + 2*q^19 + 2*q^21 + q^25 + q^27 + 2*q^31 + ...
a(6) = 2 since 8*6 + 4 = 52 = 5^2 + 3*3^2 = 7^2 + 3*1^2.
MATHEMATICA
a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, Mod[(3 - #)/2, 3, -1] &]]; (* Michael Somos, Jul 03 2011 *)
QP = QPochhammer; s = (QP[q^2]*QP[q^6])^2/(QP[q]*QP[q^3]) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
a[ n_] := If[ n < 1, Boole[n == 0], Times @@ (Which[# < 2, 0^#2, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger@(2 n + 1))]; (* Michael Somos, Mar 06 2016 *)
%t A033762 a[ n_] := SeriesCoefficient[ (1/4) x^(-1/2) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^(3/2)], {x, 0, n}]; (* Michael Somos, Mar 06 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^2 / (eta(x + A) * eta(x^3 + A)), n))}; /* Michael Somos, Sep 18 2004 */
(PARI) {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, kronecker( -12, d) * (n / d % 2)))}; /* Michael Somos, Nov 04 2005 */
(PARI) {a(n) = if( n<0, 0, n = 8*n + 4; sum( j=1, sqrtint( n\3), (j%2) * issquare(n - 3*j^2)))} /* Michael Somos, Nov 04 2005 */
(PARI) {a(n) = if( n<0, 0, sumdiv(2*n + 1, d, kronecker(-3, d)))}; /* Michael Somos, Mar 06 2016 */
(Magma) A := Basis( ModularForms( Gamma1(12), 1), 202); A[2] + A[4]; /* Michael Somos, Jul 25 2014 */
KEYWORD
nonn,changed
EXTENSIONS
Corrected by Charles R Greathouse IV, Sep 02 2009
STATUS
approved
Decimal expansion of Pi/sqrt(3) = sqrt(2*zeta(2)).
+10
28
1, 8, 1, 3, 7, 9, 9, 3, 6, 4, 2, 3, 4, 2, 1, 7, 8, 5, 0, 5, 9, 4, 0, 7, 8, 2, 5, 7, 6, 4, 2, 1, 5, 5, 7, 3, 2, 2, 8, 4, 0, 6, 6, 2, 4, 8, 0, 9, 2, 7, 4, 0, 5, 7, 5, 5, 6, 9, 8, 8, 4, 9, 3, 5, 3, 8, 8, 1, 2, 3, 1, 8, 1, 1, 2, 6, 3, 5, 3, 8, 8, 3, 6, 8, 4, 1, 2, 4, 9, 8, 8, 2, 1, 2, 0, 6, 0, 1, 6, 8, 8, 5, 6, 2, 2
OFFSET
1,2
COMMENTS
Volume of a cube with edge length 1 rotated about a space diagonal. See MathWorld Cube page. - Francis Wolinski, Mar 10 2019
Volume of a cone with unit radius and 60-degree opening angle, and so height sqrt(3). Equivalently, the volume of the cone formed by rotating a 30-60-90 degree triangle with unit short leg about the long leg. - Christoph B. Kassir, Sep 17 2022
LINKS
Jean Dolbeault, Ari Laptev and Michael Loss, Lieb-Thirring inequalities with improved constants, Vol. 10, No. 4 (2008), pp. 1121-1126, preprint, arXiv:0708.1165 [math.AP], 2007.
Sandi Klavžar, James Tuite, and Ullas Chandran, The General Position Problem: A Survey, arXiv:2501.19385 [math.CO], 2025. See p. 4.
Eric Weisstein's World of Mathematics, No-Three-in-a-Line-Problem
Eric Weisstein's World of Mathematics, Cube
FORMULA
Equals Integral_{x=0..oo} x^(1/3)/(1+x^2) dx. - Jean-François Alcover, May 24 2013
Equals (3/2)*Integral_{x=0..oo} 1/(1+x+x^2) dx. - Bruno Berselli, Jul 23 2013
Equals Sum_{n >= 0} (1/(6*n+1) - 4/(6*n+2) - 5/(6*n+3) - 1/(6*n+4) + 4/(6*n+5) + 5/(6*n+6)). - Mats Granvik, Sep 23 2013
Equals (1/2) * Sum_{n >= 0} (14*n + 11)*(-1/3)^n/((4*n + 1)*(4*n + 3)*binomial(4*n,2*n)). For more series representations of this type see the Bala link. - Peter Bala, Feb 04 2015
From Peter Bala, Nov 02 2019: (Start)
Equals 3*Sum_{n >= 1} 1/( (3*n - 1)*(3*n - 2) ).
Equals 2 - 6*Sum_{n >= 1} 1/( (3*n - 1)*(3*n + 1)*(3*n + 2) ).
Equals 5!*Sum_{n >= 1} 1/( (3*n - 1)*(3*n - 2)*(3*n + 2)*(3*n + 4) ).
Equals 3*( 1 - 2*Sum_{n >= 1} 1/(9*n^2 - 1) ).
Equals 1 + Sum_{n >=1 } (-1)^(n+1)*(6*n + 1)/(n*(n + 1)*(3*n + 1)*(3*n - 2)).
Equals (27/2)*Sum_{n >= 1} (2*n + 1)/( (3*n - 1)*(3*n + 1)*(3*n + 2)*(3*n + 4) ).
Equals 3*Integral_{x = 0..1} 1/(1 + x + x^2) dx.
Equals 3*Integral_{x = 0..1} (1 + x)/(1 - x + x^2) dx.
Equals 3*Integral_{x = 0..oo} cosh(x)/cosh(3*x) dx. (End)
Equals Integral_{x = 0..oo} log(1+x^3)/x^3 dx. - Amiram Eldar, Aug 20 2020
Equals (27*S - 36)/24, where S = A248682. - Peter Luschny, Jul 22 2022
From Peter Bala, Nov 09 2023: (Start)
For any integer k, Pi/sqrt(3) = Sum_{n >= 0} (1/(n + k + 1/3) - 1/(n - k + 2/3)) = (1/3)*Sum_{n >= 0} (1/(n - k + 1/6) - 1/(n + k + 5/6)).
Equals (3/2)*Sum_{n >= 0} 1/((2*n + 1)*binomial(2*n, n)). (End)
EXAMPLE
Pi/sqrt(3) = 1.8137993642342178505940782576421557322840662480927405755...
MATHEMATICA
RealDigits[Pi/Sqrt[3], 10, 120][[1]] (* Harvey P. Dale, Mar 04 2012 *)
PROG
(PARI) default(realprecision, 20080); x=Pi*sqrt(3)/3; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093602.txt", n, " ", d)); \\ Harry J. Smith, Jun 19 2009
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/Sqrt(3); // G. C. Greubel, Mar 10 2019
(Sage) numerical_approx(pi/sqrt(3), digits=100) # G. C. Greubel, Mar 10 2019
CROSSREFS
Continued fraction expansion is A132116. - Jonathan Vos Post, Aug 10 2007
Equals twice A093766.
Cf. A343235 (using the reciprocal), A248682.
KEYWORD
easy,nonn,cons,changed
AUTHOR
Lekraj Beedassy, May 14 2004
STATUS
approved
Number of representations of n as a sum of three times a square and two times a triangular number.
+10
27
1, 0, 1, 2, 0, 2, 1, 0, 0, 2, 0, 0, 3, 0, 2, 2, 0, 0, 2, 0, 1, 0, 0, 2, 2, 0, 0, 2, 0, 2, 1, 0, 2, 4, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 4, 0, 1, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 1, 0, 0, 4, 0, 2, 2, 0, 0, 2, 0, 2, 2, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
Number of representations of 2n as a sum of three times a triangular number and a triangular number.
LINKS
M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = A002324(4n+1) = A033762(2n) = d_{1, 3}(4n+1) - d_{2, 3}(4n+1) where d_{a, m}(n) equals the number of divisors of n which are congruent to a mod m.
From Michael Somos, Feb 14 2006: (Start)
Expansion of (psi(q)psi(q^3) + psi(-q)psi(-q^3))/2 in powers of q^2 where psi() is a Ramanujan theta function.
G.f.: (Sum_{k} x^k^2)^3*(Sum_{k>0} x^((k^2-k)/2))^2 = Product_{k>0} (1-x^(4k))(1-x^(6k))(1+x^(2k))(1+x^(3k))^2/(1+x^(6k))^2.
Euler transform of period 12 sequence [0, 1, 2, -1, 0, -2, 0, -1, 2, 1, 0, -2, ...]. (End)
From Michael Somos, Aug 11 2009: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A164272.
a(3*n + 1) = 0. (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Nov 24 2023
EXAMPLE
a(12) = 3 since we can write 12 = 3(2)^2 + 0 = 3(-2)^2 + 0 = 0 + 2*6.
2*12 = 24 = 3*1+21 = 3*3+15 = 3*6+6 so a(12) = 3.
G.f. = 1 + x^2 + 2*x^3 + 2*x^5 + x^6 + 2*x^9 + 3*x^12 + 2*x^14 + 2*x^15 + ... - Michael Somos, Aug 11 2009
G.f. = q + q^9 + 2*q^13 + 2*q^21 + q^25 + 2*q^37 + 3*q^49 + 2*q^57 + 2*q^61 + ... - Michael Somos, Aug 11 2009
MATHEMATICA
a[n_] := DivisorSum[4n+1, Switch[Mod[#, 3], 1, 1, 2, -1, 0, 0]&]; Table[ a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
PROG
(PARI) {a(n) = if(n<0, 0, n=4*n+1; sumdiv(n, d, (d%3==1) - (d%3==2)))};
(PARI) {a(n) = my(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^6+A)^5 / eta(x^2+A)*(eta(x^4+A) / eta(x^3+A) / eta(x^12+A))^2, n))}; /* Michael Somos, Feb 14 2006 */
CROSSREFS
A112606(n) = a(2*n). 2 * A112607(n) = a(2*n + 1). A123884(n) = a(3*n). A112605(n) = a(3*n + 2). A131961(n) = a(6*n). A112608(n) =a(6*n + 2). 2 * A131963(n) = a(6*n + 3). 2 * A112609(n) = a(6*n + 5). - Michael Somos, Aug 11 2009
KEYWORD
nonn,changed
AUTHOR
James A. Sellers, Dec 21 2005
STATUS
approved
Decimal expansion of (1/16)*Pi^2.
+10
26
6, 1, 6, 8, 5, 0, 2, 7, 5, 0, 6, 8, 0, 8, 4, 9, 1, 3, 6, 7, 7, 1, 5, 5, 6, 8, 7, 4, 9, 2, 2, 5, 9, 4, 4, 5, 9, 5, 7, 1, 0, 6, 2, 1, 2, 9, 5, 2, 5, 4, 9, 4, 1, 4, 1, 5, 0, 8, 3, 4, 3, 3, 6, 0, 1, 3, 7, 5, 2, 8, 0, 1, 4, 0, 1, 2, 0, 0, 3, 2, 7, 6, 8, 7, 6, 1, 0, 8, 3, 7, 7, 3, 2, 4, 0, 9, 5, 1, 4, 4, 8, 9, 0, 0
OFFSET
0,1
COMMENTS
Conjectured to be density of densest packing of equal spheres in four dimensions (achieved for example by the D_4 lattice).
From Hugo Pfoertner, Aug 29 2018: (Start)
Also decimal expansion of Sum_{k>=0} (-1)^k*d(2*k+1)/(2*k+1), where d(n) is the number of divisors of n A000005(n).
Ramanujan's question 770 in the Journal of the Indian Mathematical Society (VIII, 120) asked "If d(n) denotes the number of divisors of n, show that d(1) - d(3)/3 + d(5)/5 - d(7)/7 + d(9)/9 - ... is a convergent series ...".
A summation of the first 2*10^9 terms performed by Hans Havermann yields 0.6168503077..., which is close to (Pi/4)^2=0.616850275...
(End)
From Robert Israel, Aug 31 2018: (Start)
Modulo questions about rearrangement of conditionally convergent series, which I expect a more careful treatment would handle, Sum_{k>=0} (-1)^k*d(2*k+1)/(2*k+1) should indeed be Pi^2/16.
Sum_{k>=0} (-1)^k d(2k+1)/(2k+1)
= Sum_{k>=0} Sum_{2i+1 | 2k+1} (-1)^k/(2k+1)
(letting 2k+1=(2i+1)(2j+1): note that k == i+j (mod 2))
= Sum_{i>=0} Sum_{j>=0} (-1)^(i+j)/((2i+1)(2j+1))
= (Sum_{i>=0} (-1)^i/(2i+1))^2 = (Pi/4)^2. (End)
Volume bounded by the surface (x+y+z)^2-2(x^2+y^2+z^2)=4xyz, the ellipson (see Wildberger, p. 287). - Patrick D McLean, Dec 03 2020
REFERENCES
S. D. Chowla, Solution and Remarks on Question 770, J. Indian Math. Soc. 17 (1927-28), 166-171.
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.7, p. 507.
S. Ramanujan, Coll. Papers, Chelsea, 1962, Question 770, page 333.
G. N. Watson, Solution to Question 770, J. Indian Math. Soc. 18 (1929-30), 294-298.
LINKS
B. C. Berndt, Y. S. Choi and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q770, JIMS VIII).
J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383-403.
Mathematics StackExchange, Sum_k (-1)^k tau(2k+1)/(2k+1).
G. Nebe and N. J. A. Sloane, Home page for D_4 lattice.
N. J. Wildberger, Divine Proportions: Rational Trigonometry to Universal Geometry, Wild Egg Books, Sydney 2005.
FORMULA
Equals A003881^2. - Bruno Berselli, Feb 11 2013
Equals A123092+1/2. - R. J. Mathar, Feb 15 2013
Equals Integral_{x>0} x^2*log(x)/((1+x)^2*(1+x^2)) dx. - Jean-François Alcover, Apr 29 2013
Equals the Bessel moment integral_{x>0} x*I_0(x)*K_0(x)^3. - Jean-François Alcover, Jun 05 2016
Equals Sum_{k>=1} zeta(2*k)*k/4^k. - Amiram Eldar, May 29 2021
EXAMPLE
0.6168502750680849136771556874922594459571...
MATHEMATICA
RealDigits[N[Gamma[3/2]^4, 104]] (* Fred Daniel Kline, Feb 19 2017 *)
RealDigits[N[Pi^2/16, 100]][[1]] (* Vincenzo Librandi, Feb 20 2017 *)
Integrate[Boole[(x+y+z)^2-2(x^2+y^2+z^2)>4x y z], {x, 0, 1}, {y, 0, 1}, {z, 0, 1}] (* Patrick D McLean, Dec 03 2020 *)
PROG
(PARI) (Pi/4)^2 \\ Charles R Greathouse IV, Oct 31 2014
(Magma) pi:=Pi(RealField(110)); Reverse(Intseq(Floor((1/16)*10^100*pi^2))); // Vincenzo Librandi, Feb 20 2017
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Feb 10 2013
STATUS
approved
Decimal expansion of 1/sqrt(12) = 1/(2*sqrt(3)).
+10
25
2, 8, 8, 6, 7, 5, 1, 3, 4, 5, 9, 4, 8, 1, 2, 8, 8, 2, 2, 5, 4, 5, 7, 4, 3, 9, 0, 2, 5, 0, 9, 7, 8, 7, 2, 7, 8, 2, 3, 8, 0, 0, 8, 7, 5, 6, 3, 5, 0, 6, 3, 4, 3, 8, 0, 0, 9, 3, 0, 1, 1, 6, 3, 2, 4, 1, 9, 8, 8, 8, 3, 6, 1, 5, 1, 4, 6, 6, 6, 7, 2, 8, 4, 6, 8, 5, 7, 6, 9, 7, 7, 9, 2, 8, 7, 4, 7, 6, 2
OFFSET
0,1
COMMENTS
Center density of densest packing of equal circles in two dimensions (achieved for example by the A2 lattice).
Let a equal the length of one side of an equilateral triangle and let b equal the radius of the circle inscribed in that triangle. This sequence gives the decimal expansion of b/a. - Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Feb 20 2004
The constant (3+sqrt 3)/6, which is 0.5 larger than this, plays a role in Borsuk's conjecture. - Arkadiusz Wesolowski, Mar 17 2014
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
EXAMPLE
0.28867513459481288225457439025097872782380087563506343800930116324198883615...
MATHEMATICA
RealDigits[N[1/Sqrt[12], 200]] (* Vladimir Joseph Stephan Orlovsky, May 30 2010 *)
PROG
(PARI) 1/sqrt(12) \\ Charles R Greathouse IV, Oct 31 2014
CROSSREFS
KEYWORD
nonn,cons
STATUS
approved
Decimal expansion of Pi/(3*sqrt(2)).
+10
21
7, 4, 0, 4, 8, 0, 4, 8, 9, 6, 9, 3, 0, 6, 1, 0, 4, 1, 1, 6, 9, 3, 1, 3, 4, 9, 8, 3, 4, 3, 4, 4, 8, 9, 4, 9, 7, 6, 9, 1, 0, 3, 6, 1, 4, 8, 9, 5, 9, 4, 8, 3, 7, 0, 5, 1, 4, 2, 3, 2, 6, 0, 1, 1, 5, 9, 4, 0, 5, 7, 9, 8, 8, 4, 9, 9, 1, 2, 3, 1, 8, 4, 2, 9, 2, 2, 1, 1, 5, 5, 7, 9, 4, 1, 2, 7, 5, 3, 9, 5, 6, 0
OFFSET
0,1
COMMENTS
Density of densest packing of equal spheres in three dimensions (achieved for example by the fcc lattice).
Atomic packing factor (APF) of the face-centered-cubic (fcc) and the hexagonal-close-packed (hcp) crystal lattices filled with spheres of the same diameter. - Stanislav Sykora, Sep 29 2014
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. 15, line n = 3.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.7, p. 506.
Clifford A. Pickover, The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics (2009), at p. 126.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 29.
LINKS
James Grime and Brady Haran, The Best Way to Pack Spheres, Numberphile video (2018).
J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383-403.
Thomas C. Hales, Dense Sphere Packings, Cambridge University Press, 2012.
G. Nebe and N. J. A. Sloane, Home page for fcc lattice.
N. J. A. Sloane and Andrey Zabolotskiy, Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (some values are only conjectural).
Eric Weisstein's World of Mathematics, Cubic Close Packing.
Eric Weisstein's World of Mathematics, Ellipsoid Packing.
Eric Weisstein's World of Mathematics, Sphere Packing.
FORMULA
Equals A019670*A010503. - R. J. Mathar, Feb 05 2009
Equals Integral_{x >= 0} (4*x^2 + 1)/((2*x^2 + 1)*(8*x^2 + 1)) dx. - Peter Bala, Feb 12 2025
EXAMPLE
0.74048048969306104116931349834344894976910361489594837...
MATHEMATICA
RealDigits[Pi/(3 Sqrt[2]), 10, 120][[1]] (* Harvey P. Dale, Feb 03 2012 *)
PROG
(PARI) default(realprecision, 20080); x=10*Pi*sqrt(2)/6; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b093825.txt", n, " ", d)); \\ Harry J. Smith, Jun 18 2009
(PARI) Pi/sqrt(18) \\ Charles R Greathouse IV, May 11 2017
CROSSREFS
Cf. A093824.
Cf. APF's of other crystal lattices: A019673 (simple cubic), A247446 (diamond cubic).
Cf. A161686 (continued fraction).
KEYWORD
nonn,cons,easy,changed
AUTHOR
Eric W. Weisstein, Apr 16 2004
EXTENSIONS
Entry revised by N. J. A. Sloane, Feb 10 2013
STATUS
approved

Search completed in 0.033 seconds