[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a099306 -id:a099306
     Sort: relevance | references | number | modified | created      Format: long | short | data
Maximal digit in the primorial base representation of the n-th arithmetic derivative of 128.
+0
1
4, 4, 6, 2, 6, 11, 8, 7, 11, 11, 8, 10, 15, 15, 12, 18, 17, 30, 28, 22, 21, 37, 28, 38, 42, 33, 22, 52, 43, 56, 47, 49, 57, 60, 55, 54, 58, 70, 52, 66, 68, 57, 63, 86, 58, 88, 92, 66, 78, 95, 85, 52, 102, 70, 111, 57, 117, 99, 136, 104, 129, 110, 146, 127, 135, 132, 131, 129, 126, 145, 112, 150, 128, 129, 154, 161, 145
OFFSET
0,1
COMMENTS
This sequence relates to the question whether A327969(128) has a positive integer value, or whether it is -1 by the escape clause.
Note that when iterating the map k -> k' from A276086(A369638(4)) = A276086(15232) = 3299611946113357875 onward, the maximal exponent in the prime factorization (A051903) keeps on decreasing until it reaches 1 at the fifth iteration, and then stays as 1 for three more iterations (with k then 38863666759992439 = 643*60441161368573), but then, alas, on the next iteration, k' = 60441161369216 = 2^7 * 472196573197.
FORMULA
a(n) = A328114(A369638(n)).
EXAMPLE
The third arithmetic derivative (A099306) of 128 is 5056, which in primorial base (A049345) is written as 220220, therefore a(3) = 2.
The fourth arithmetic derivative (A258644) of 128 is 15232, which in primorial base is written as 663320, therefore a(4) = 6.
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 04 2024
STATUS
approved
Numbers k such that the third arithmetic derivative of A276086(k) is prime.
+0
2
5, 15, 21, 31, 43, 79, 91, 98, 104, 106, 223, 229, 231, 254, 255, 289, 291, 301, 305, 423, 453, 456, 487, 670, 674, 677, 692, 702, 730, 736, 2343, 2378, 2380, 2400, 2409, 2534, 2537, 2543, 2552, 2562, 2585, 2602, 2618, 2629, 2767, 2804, 2821, 2831, 2839, 2942, 2943, 2957, 2962, 2963, 2974, 4621, 4669, 4672, 4687, 4717, 4841, 4844
OFFSET
1,1
COMMENTS
Numbers k such that A003415(A003415(A327860(k))) = A099306(A276086(k)) is a prime.
Numbers k such that A276086(k) is in A328239.
For all n, A327969(a(n)) <= 6. This is sharp for example with a(7) = 91.
LINKS
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A327860(n) = { my(m=1, i=0, s=0, pr=1, nextpr); while((n>0), i=i+1; nextpr = prime(i)*pr; if((n%nextpr), my(e=((n%nextpr)/pr)); m *= (prime(i)^e); s += (e / prime(i)); n-=(n%nextpr)); pr=nextpr); (s*m); };
isA328249(n) = isprime(A003415(A003415(A327860(n))));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 11 2019
STATUS
approved
Numbers whose third arithmetic derivative (A099306) is a squarefree number (A005117), but the second derivative (A068346) is not.
+0
3
33, 49, 98, 129, 141, 194, 205, 249, 301, 306, 445, 481, 493, 529, 549, 553, 589, 615, 681, 741, 746, 913, 917, 946, 949, 962, 973, 993, 1010, 1106, 1273, 1386, 1397, 1417, 1430, 1518, 1561, 1611, 1633, 1761, 1802, 1842, 1849, 1858, 1870, 1946, 1957, 1977, 2030, 2049, 2078, 2105, 2139, 2166, 2170, 2173, 2175, 2209, 2223, 2330
OFFSET
1,1
LINKS
EXAMPLE
For n=33, its first arithmetic derivative is A003415(33) = 14, its second derivative is A003415(14) = 9 = 3^2 (which is not squarefree) and its third derivative is A003415(9) = 6 = 2*3, which is, thus 33 is included in this sequence.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
isA328247(n) = { my(u=A003415(A003415(n))); (!issquarefree(u) && issquarefree(A003415(u))); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 11 2019
STATUS
approved
Numbers whose third arithmetic derivative (A099306) is a squarefree number (A005117).
+0
6
9, 14, 18, 21, 25, 33, 38, 46, 49, 57, 65, 77, 85, 93, 98, 121, 126, 129, 134, 138, 141, 145, 150, 161, 166, 177, 185, 186, 194, 201, 205, 206, 209, 217, 221, 237, 242, 249, 253, 258, 262, 265, 266, 289, 290, 301, 305, 306, 315, 322, 326, 333, 334, 338, 341, 342, 350, 361, 365, 369, 375, 377, 381, 393, 398, 402, 413, 414
OFFSET
1,1
COMMENTS
Numbers n for which A008966(A003415(A003415(A003415(n)))) = 1.
LINKS
EXAMPLE
For n=9, its first arithmetic derivative is A003415(9) = 6, its second derivative is A003415(6) = 5, and its third derivative is A003415(5) = 1, and 1 is a squarefree number (in A005117), thus 9 is included in this sequence.
For n=14, A003415(14) = 9, A003415(9) = 6, A003415(6) = 5, and 5, like all primes, is a squarefree number, thus 14 is included in this sequence.
For n=49, A003415(49) = 14, A003415(14) = 9, A003415(9) = 6 = 2*3, and 6 is a squarefree number, thus 49 is included in this sequence.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
isA328246(n) = { my(u=A003415(A003415(A003415(n)))); (u>0 && issquarefree(u)); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 11 2019
STATUS
approved
Numbers whose third arithmetic derivative (A099306) is prime.
+0
9
14, 18, 38, 46, 138, 150, 166, 186, 258, 266, 322, 338, 342, 350, 398, 402, 502, 526, 530, 546, 550, 610, 626, 658, 662, 686, 717, 722, 725, 726, 734, 750, 758, 774, 826, 890, 931, 966, 970, 1002, 1034, 1074, 1110, 1126, 1166, 1175, 1178, 1190, 1258, 1262, 1294, 1302, 1338, 1366
OFFSET
1,1
COMMENTS
No multiples of 4 because subsequence of A048103.
LINKS
EXAMPLE
A003415(A003415(A003415(14))) = 5, which is a prime, thus 14 is included in this sequence.
MATHEMATICA
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := dn[n] = Module[{f = Transpose[ FactorInteger@n]}, If[ PrimeQ@n, 1, Total[n*f[[2]]/f[[1]]]]]; Select[Range@1390, PrimeQ@ dn@ dn@ dn@# &] (* Robert G. Wilson v, Oct 22 2019 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
isA328239(n) = isprime(A003415(A003415(A003415(n))));
CROSSREFS
Subsequence of A048103 and of A099308.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 10 2019
STATUS
approved
A(n,k) = n^(k) = k-th arithmetic derivative of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
+0
17
0, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 0, 0, 4, 5, 0, 0, 0, 0, 4, 1, 6, 0, 0, 0, 0, 4, 0, 5, 7, 0, 0, 0, 0, 4, 0, 1, 1, 8, 0, 0, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 0, 0, 4, 0, 0, 0, 16, 6, 10, 0, 0, 0, 0, 4, 0, 0, 0, 32, 5, 7, 11, 0, 0, 0, 0, 4, 0, 0, 0, 80, 1, 1, 1, 12
OFFSET
0,6
LINKS
J. Kovič, The Arithmetic Derivative and Antiderivative, Journal of Integer Sequences 15 (2012), Article 12.3.8
FORMULA
A(n,k) = A003415^k(n).
EXAMPLE
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
3, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ...
5, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
6, 5, 1, 0, 0, 0, 0, 0, 0, 0, ...
7, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
8, 12, 16, 32, 80, 176, 368, 752, 1520, 3424, ...
9, 6, 5, 1, 0, 0, 0, 0, 0, 0, ...
MAPLE
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
seq(seq(A(n, h-n), n=0..h), h=0..14);
MATHEMATICA
d[n_] := n*Sum[i[[2]]/i[[1]], {i, FactorInteger[n]}]; d[0] = d[1] = 0;
A[n_, k_] := A[n, k] = If[k == 0, n, d[A[n, k-1]]];
Table[A[n, h-n], {h, 0, 14}, {n, 0, h}] // Flatten (* Jean-François Alcover, Apr 27 2017, translated from Maple *)
CROSSREFS
Rows n=0,1,4,8 give: A000004, A000007, A010709, A129150.
Row 15: A090636, Row 28: A090637, Row 63: A090635, Row 81: A129151, Row 128: A369638, Row 1024: A214800, Row 15625: A129152.
Main diagonal gives A185232.
Antidiagonal sums give A258652.
Cf. also A328383.
KEYWORD
nonn,tabl,look
AUTHOR
Alois P. Heinz, Jun 06 2015
STATUS
approved
3rd Arithmetic derivation of products of 2 successive prime numbers (A006094).
+0
2
0, 16, 32, 10, 48, 1, 92, 1, 92, 96, 156, 1, 128, 44, 188, 608, 248, 1408, 22, 1472, 240, 324, 368, 30, 86, 288, 32, 1188, 1, 1552, 30, 560, 476, 2176, 924, 476, 5120, 60, 432, 2176, 1148, 512, 4480, 1, 1300, 324, 1, 391, 1052, 46, 720, 3232, 672, 2304, 1448, 860, 2484, 1036, 226, 768, 7232, 1628
OFFSET
1,2
COMMENTS
The first arithmetic derivation of products of 2 successive prime numbers (A006094) is the sum of 2 successive prime numbers (A001043). A001043 = (A006094)’. The second arithmetic derivation is (A240052) = (A001043)’ = (A006094)’’. The third arithmetic derivation of products of 2 successive prime numbers (A006094) is a(n) = (A240052)’ = (A001043)’’ = (A006094)’’’.
LINKS
Wikipedia, p-derivation
FORMULA
a(n) = (A006094(n))’’’.
a(n) = A099306(A006094(n)).
a(n) = A003415(A240052(n)).
EXAMPLE
a(12)=(A006094(12))'''=(37*41)'''=(A001043(12))''=(78)''=(71)'=1;
a(14)=(A006094(14))'''=(43*47)'''=(A001043(12))''=(90)''=(123)'=44.
MAPLE
with(numtheory); P:= proc(q) local a, b, c, d, n, p; a:=ithprime(n)*ithprime(n+1);
for n from 1 to q do a:=ithprime(n)*ithprime(n+1);
b:=a*add(op(2, p)/op(1, p), p=ifactors(a)[2]); c:=b*add(op(2, p)/op(1, p), p=ifactors(b)[2]);
d:=c*add(op(2, p)/op(1, p), p=ifactors(c)[2]); print(d);
od; end: P(10^4); # Paolo P. Lava, Apr 07 2014
CROSSREFS
Cf. A003415 (1st derivative), A068346 (2nd derivative), A099306 (3rd derivative).
KEYWORD
nonn
AUTHOR
Freimut Marschner, Mar 31 2014
STATUS
approved
Numbers with prime arithmetic derivative A003415.
+0
25
6, 10, 22, 30, 34, 42, 58, 66, 70, 78, 82, 105, 114, 118, 130, 142, 154, 165, 174, 182, 202, 214, 222, 231, 238, 246, 255, 273, 274, 282, 285, 286, 298, 310, 318, 345, 357, 358, 366, 370, 382, 385, 390, 394, 399, 418, 430, 434, 442, 454, 455, 465, 474, 478
OFFSET
1,1
COMMENTS
Equivalently, solutions to n'' = 1, since n' = 1 iff n is prime. Twice the lesser of the twin primes, 2*A001359 = A108605, are a subsequence. - M. F. Hasler, Apr 07 2015
All terms are squarefree, because if there would be a prime p whose square p^2 would divide n, then A003415(n) = (A003415(p^2) * (n/p^2)) + (p^2 * A003415(n/p^2)) = p*[(2 * (n/p^2)) + (p * A003415(n/p^2))], which certainly is not a prime. - Antti Karttunen, Oct 10 2019
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10001 (first 1000 terms from Reinhard Zumkeller)
FORMULA
A010051(A003415(a(n))) = 1; A068346(a(n)) = 1; A099306(a(n)) = 0.
A003415(a(n)) = A328385(a(n)) = A241859(n); A327969(a(n)) = 3. - Antti Karttunen, Oct 19 2019
EXAMPLE
A003415(42) = A003415(2*3*7) = 2*3+3*7+7*2 = 41 = A000040(13), therefore 42 is a term.
MATHEMATICA
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Select[Range[500], dn[dn[#]] == 1 &] (* T. D. Noe, Mar 07 2013 *)
PROG
(Haskell)
a157037 n = a157037_list !! (n-1)
a157037_list = filter ((== 1) . a010051' . a003415) [1..]
-- Reinhard Zumkeller, Apr 08 2015
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
isA157037(n) = isprime(A003415(n)); \\ Antti Karttunen, Oct 19 2019
(Python)
from itertools import count, islice
from sympy import isprime, factorint
def A157037_gen(): # generator of terms
return filter(lambda n:isprime(sum(n*e//p for p, e in factorint(n).items())), count(2))
A157037_list = list(islice(A157037_gen(), 20)) # Chai Wah Wu, Jun 23 2022
CROSSREFS
Cf. A189441 (primes produced by these numbers), A241859.
Cf. A192192, A328239 (numbers whose 2nd and numbers whose 3rd arithmetic derivative is prime).
Cf. A108605, A256673 (subsequences).
Subsequence of following sequences: A005117, A099308, A235991, A328234 (A328393), A328244, A328321.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 22 2009
STATUS
approved
a(n) = n'' = second arithmetic derivative of n.
+0
49
0, 0, 0, 0, 4, 0, 1, 0, 16, 5, 1, 0, 32, 0, 6, 12, 80, 0, 10, 0, 44, 7, 1, 0, 48, 7, 8, 27, 80, 0, 1, 0, 176, 9, 1, 16, 92, 0, 10, 32, 72, 0, 1, 0, 112, 16, 10, 0, 240, 9, 39, 24, 92, 0, 108, 32, 96, 13, 1, 0, 96, 0, 14, 20, 640, 21, 1, 0, 156, 15, 1, 0, 220, 0, 16, 16, 176, 21, 1, 0, 368, 216
OFFSET
0,5
COMMENTS
a(2p) = 1 for any prime p implies p,p+2 form a twin prime pair. - Kevin J. Gomez, Aug 29 2017
Indices of records > 0 appear to all belong to A116882. - Bill McEachen, Oct 16 2023
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 2000 terms from T. D. Noe)
Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003.
FORMULA
a(n) = A003415(A003415(n)).
a(A000040(n)) = 0; a(A157037(n)) = 1. - Reinhard Zumkeller, Feb 22 2009
MAPLE
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
a:= n-> d(d(n));
seq(a(n), n=0..100); # Alois P. Heinz, Aug 29 2017
MATHEMATICA
dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[dn[dn[n]], {n, 100}] (T. D. Noe)
f[n_] := If[ Abs@ n < 2, 0, n*Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; Table[ f[ f[ n]], {n, 81}] (* Robert G. Wilson v, May 12 2012 *)
PROG
(Haskell)
a068346 = a003415 . a003415 -- Reinhard Zumkeller, Nov 10 2013
CROSSREFS
Cf. A003415 (arithmetic derivative of n), A099306 (third arithmetic derivative of n).
Column k=2 of A258651.
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, Feb 28 2002
EXTENSIONS
More terms from T. D. Noe, Oct 12 2004
STATUS
approved
a(n) = n' = arithmetic derivative of n: a(0) = a(1) = 0, a(prime) = 1, a(m*n) = m*a(n) + n*a(m).
(Formerly M3196)
+0
1077
0, 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 10, 13, 1, 44, 10, 15, 27, 32, 1, 31, 1, 80, 14, 19, 12, 60, 1, 21, 16, 68, 1, 41, 1, 48, 39, 25, 1, 112, 14, 45, 20, 56, 1, 81, 16, 92, 22, 31, 1, 92, 1, 33, 51, 192, 18, 61, 1, 72, 26, 59, 1, 156, 1, 39, 55, 80, 18, 71
OFFSET
0,5
COMMENTS
Can be extended to negative numbers by defining a(-n) = -a(n).
Based on the product rule for differentiation of functions: for functions f(x) and g(x), (fg)' = f'g + fg'. So with numbers, (ab)' = a'b + ab'. This implies 1' = 0. - Kerry Mitchell, Mar 18 2004
The derivative of a number x with respect to a prime number p as being the number "dx/dp" = (x-x^p)/p, which is an integer due to Fermat's little theorem. - Alexandru Buium, Mar 18 2004
The relation (ab)' = a'b + ab' implies 1' = 0, but it does not imply p' = 1 for p a prime. In fact, any function f defined on the primes can be extended uniquely to a function on the integers satisfying this relation: f(Product_i p_i^e_i) = (Product_i p_i^e_i) * (Sum_i e_i*f(p_i)/p_i). - Franklin T. Adams-Watters, Nov 07 2006
See A131116 and A131117 for record values and where they occur. - Reinhard Zumkeller, Jun 17 2007
Let n be the product of a multiset P of k primes. Consider the k-dimensional box whose edges are the elements of P. Then the (k-1)-dimensional surface of this box is 2*a(n). For example, 2*a(25) = 20, the perimeter of a 5 X 5 square. Similarly, 2*a(18) = 42, the surface area of a 2 X 3 X 3 box. - David W. Wilson, Mar 11 2011
The arithmetic derivative n' was introduced, probably for the first time, by the Spanish mathematician José Mingot Shelly in June 1911 with "Una cuestión de la teoría de los números", work presented at the "Tercer Congreso Nacional para el Progreso de las Ciencias, Granada", cf. link to the abstract on Zentralblatt MATH, and L. E. Dickson, History of the Theory of Numbers. - Giorgio Balzarotti, Oct 19 2013
a(A235991(n)) odd; a(A235992(n)) even. - Reinhard Zumkeller, Mar 11 2014
Sequence A157037 lists numbers with prime arithmetic derivative, i.e., indices of primes in this sequence. - M. F. Hasler, Apr 07 2015
Maybe the simplest "natural extension" of the arithmetic derivative, in the spirit of the above remark by Franklin T. Adams-Watters (2006), is the "pi based" version where f(p) = primepi(p), see sequence A258851. When f is chosen to be the identity map (on primes), one gets A066959. - M. F. Hasler, Jul 13 2015
When n is composite, it appears that a(n) has lower bound 2*sqrt(n), with equality when n is the square of a prime, and a(n) has upper bound (n/2)*log_2(n), with equality when n is a power of 2. - Daniel Forgues, Jun 22 2016
If n = p1*p2*p3*... where p1, p2, p3, ... are all the prime factors of n (not necessarily distinct), and h is a real number (we assume h nonnegative and < 1), the arithmetic derivative of n is equivalent to n' = lim_{h->0} ((p1+h)*(p2+h)*(p3+h)*... - (p1*p2*p3*...))/h. It also follows that the arithmetic derivative of a prime is 1. We could assume h = 1/N, where N is an integer; then the limit becomes {N -> oo}. Note that n = 1 is not a prime and plays the role of constant. - Giorgio Balzarotti, May 01 2023
REFERENCES
G. Balzarotti, P. P. Lava, La derivata aritmetica, Editore U. Hoepli, Milano, 2013.
E. J. Barbeau, Problem, Canad. Math. Congress Notes, 5 (No. 8, April 1973), 6-7.
L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chapter XIX, p. 451, Dover Edition, 2005. (Work originally published in 1919.)
A. M. Gleason et al., The William Lowell Putnam Mathematical Competition: Problems and Solutions 1938-1964, Math. Assoc. America, 1980, p. 295.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Krassimir T. Atanassov, A formula for the n-th prime number, Comptes rendus de l'Académie bulgare des Sciences, Tome 66, No 4, 2013.
E. J. Barbeau, Remark on an arithmetic derivative, Canad. Math. Bull. vol. 4, no. 2, May 1961.
A. Buium, Home Page
A. Buium, Differential characters of Abelian varieties over p-adic fields, Invent. Math. 122 (1995), no. 2, 309-340.
A. Buium, Geometry of p-jets, Duke Math. J. 82 (1996), no. 2, 349-367.
A. Buium, Arithmetic analogues of derivations, J. Algebra 198 (1997), no. 1, 290-299.
A. Buium, Differential modular forms, J. Reine Angew. Math. 520 (2000), 95-167.
Brad Emmons and Xiao Xiao, The Arithmetic Partial Derivative, arXiv:2201.12453 [math.NT], 2022.
José María Grau and Antonio M. Oller-Marcén, Giuga Numbers and the Arithmetic Derivative, Journal of Integer Sequences, Vol. 15 (2012), #12.4.1.
P. Haukkanen, M. Mattila, J. K. Merikoski and T. Tossavainen, Can the Arithmetic Derivative be Defined on a Non-Unique Factorization Domain?, Journal of Integer Sequences, 16 (2013), #13.1.2. - From N. J. A. Sloane, Feb 03 2013
P. Haukkanen, J. K. Merikoski and T. Tossavainen, Asymptotics of partial sums of the Dirichlet series of the arithmetic derivative, Mathematical Communications 25 (2020), 107-115.
Antti Karttunen, Program in LODA-assembly
J. Kovič, The Arithmetic Derivative and Antiderivative, Journal of Integer Sequences 15 (2012), Article 12.3.8.
Ivars Peterson, Deriving the Structure of Numbers, Science News, March 20, 2004.
D. J. M. Shelly, Una cuestión de la teoria de los numeros, Asociation Esp. Granada 1911, 1-12 S (1911). (Abstract of ref. JFM42.0209.02 on zbMATH.org)
T. Tossavainen, P. Haukkanen, J. K. Merikoski, and M. Mattila, We can differentiate numbers, too, The College Mathematics Journal 55 (2024), no. 2, 100-108.
Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003, #03.3.4.
Linda Westrick, Investigations of the Number Derivative, Siemens Foundation competition 2003 and Intel Science Talent Search 2004.
FORMULA
If n = Product p_i^e_i, a(n) = n * Sum (e_i/p_i).
a(m*p^p) = (m + a(m))*p^p, p prime: a(m*A051674(k))=A129283(m)*A051674(k). - Reinhard Zumkeller, Apr 07 2007
For n > 1: a(n) = a(A032742(n)) * A020639(n) + A032742(n). - Reinhard Zumkeller, May 09 2011
a(n) = n * Sum_{p|n} v_p(n)/p, where v_p(n) is the largest power of the prime p dividing n. - Wesley Ivan Hurt, Jul 12 2015
For n >= 2, Sum_{k=2..n} floor(1/a(k)) = pi(n) = A000720(n) (see K. T. Atanassov article). - Ivan N. Ianakiev, Mar 22 2019
From A.H.M. Smeets, Jan 17 2020: (Start)
Limit_{n -> oo} (1/n^2)*Sum_{i=1..n} a(i) = A136141/2.
Limit_{n -> oo} (1/n)*Sum_{i=1..n} a(i)/i = A136141.
a(n) = n if and only if n = p^p, where p is a prime number. (End)
Dirichlet g.f.: zeta(s-1)*Sum_{p prime} 1/(p^s-p), see A136141 (s=2), A369632 (s=3) [Haukkanen, Merikoski and Tossavainen]. - Sebastian Karlsson, Nov 25 2021
From Antti Karttunen, Nov 25 2021: (Start)
a(n) = Sum_{d|n} d * A349394(n/d).
For all n >= 1, A322582(n) <= a(n) <= A348507(n).
If n is not a prime, then a(n) >= 2*sqrt(n), or in other words, for all k >= 1 for which A002620(n)+k is not a prime, we have a(A002620(n)+k) > n. [See Ufnarovski and Åhlander, Theorem 9, point (3).]
(End)
EXAMPLE
6' = (2*3)' = 2'*3 + 2*3' = 1*3 + 2*1 = 5.
Note that, for example, 2' + 3' = 1 + 1 = 2, (2+3)' = 5' = 1. So ' is not linear.
G.f. = x^2 + x^3 + 4*x^4 + x^5 + 5*x^6 + x^7 + 12*x^8 + 6*x^9 + 7*x^10 + ...
MAPLE
A003415 := proc(n) local B, m, i, t1, t2, t3; B := 1000000000039; if n<=1 then RETURN(0); fi; if isprime(n) then RETURN(1); fi; t1 := ifactor(B*n); m := nops(t1); t2 := 0; for i from 1 to m do t3 := op(i, t1); if nops(t3) = 1 then t2 := t2+1/op(t3); else t2 := t2+op(2, t3)/op(op(1, t3)); fi od: t2 := t2-1/B; n*t2; end;
A003415 := proc(n)
local a, f;
a := 0 ;
for f in ifactors(n)[2] do
a := a+ op(2, f)/op(1, f);
end do;
n*a ;
end proc: # R. J. Mathar, Apr 05 2012
MATHEMATICA
a[ n_] := If[ Abs @ n < 2, 0, n Total[ #2 / #1 & @@@ FactorInteger[ Abs @ n]]]; (* Michael Somos, Apr 12 2011 *)
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Table[dn[n], {n, 0, 100}] (* T. D. Noe, Sep 28 2012 *)
PROG
(PARI) A003415(n) = {local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))} /* Michael B. Porter, Nov 25 2009 */
(PARI) apply( A003415(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]), [0..99]) \\ M. F. Hasler, Sep 25 2013, updated Nov 27 2019
(PARI) A003415(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= spf); (s); }; \\ Antti Karttunen, Mar 10 2021
(PARI) a(n) = my(f=factor(n), r=[1/(e+!e)|e<-f[, 1]], c=f[, 2]); n*r*c; \\ Ruud H.G. van Tol, Sep 03 2023
(Haskell)
a003415 0 = 0
a003415 n = ad n a000040_list where
ad 1 _ = 0
ad n ps'@(p:ps)
| n < p * p = 1
| r > 0 = ad n ps
| otherwise = n' + p * ad n' ps' where
(n', r) = divMod n p
-- Reinhard Zumkeller, May 09 2011
(Magma) Ad:=func<h | h*(&+[Factorisation(h)[i][2]/Factorisation(h)[i][1]: i in [1..#Factorisation(h)]])>; [n le 1 select 0 else Ad(n): n in [0..80]]; // Bruno Berselli, Oct 22 2013
(Python)
from sympy import factorint
def A003415(n):
return sum([int(n*e/p) for p, e in factorint(n).items()]) if n > 1 else 0
# Chai Wah Wu, Aug 21 2014
(Sage)
def A003415(n):
F = [] if n == 0 else factor(n)
return n * sum(g / f for f, g in F)
[A003415(n) for n in range(79)] # Peter Luschny, Aug 23 2014
(GAP)
A003415:= Concatenation([0, 0], List(List([2..10^3], Factors),
i->Product(i)*Sum(i, j->1/j))); # Muniru A Asiru, Aug 31 2017
(APL, Dyalog dialect) A003415 ← { ⍺←(0 1 2) ⋄ ⍵≤1:⊃⍺ ⋄ 0=(3⊃⍺)|⍵:((⊃⍺+(2⊃⍺)×(⍵÷3⊃⍺)) ((2⊃⍺)×(3⊃⍺)) (3⊃⍺)) ∇ ⍵÷3⊃⍺ ⋄ ((⊃⍺) (2⊃⍺) (1+(3⊃⍺))) ∇ ⍵} ⍝ Antti Karttunen, Feb 18 2024
CROSSREFS
Cf. A086134 (least prime factor of n').
Cf. A086131 (greatest prime factor of n').
Cf. A068719 (derivative of 2n).
Cf. A068720 (derivative of n^2).
Cf. A068721 (derivative of n^3).
Cf. A001787 (derivative of 2^n).
Cf. A027471 (derivative of 3^(n-1)).
Cf. A085708 (derivative of 10^n).
Cf. A068327 (derivative of n^n).
Cf. A024451 (derivative of p#).
Cf. A068237 (numerator of derivative of 1/n).
Cf. A068238 (denominator of derivative of 1/n).
Cf. A068328 (derivative of squarefree numbers).
Cf. A068311 (derivative of n!).
Cf. A168386 (derivative of n!!).
Cf. A260619 (derivative of hyperfactorial(n)).
Cf. A260620 (derivative of superfactorial(n)).
Cf. A068312 (derivative of triangular numbers).
Cf. A068329 (derivative of Fibonacci(n)).
Cf. A096371 (derivative of partition number).
Cf. A099301 (derivative of d(n)).
Cf. A099310 (derivative of phi(n)).
Cf. A342925 (derivative of sigma(n)).
Cf. A349905 (derivative of prime shift).
Cf. A327860 (derivative of primorial base exp-function).
Cf. A369252 (derivative of products of three odd primes), A369251 (same sorted).
Cf. A068346 (second derivative of n).
Cf. A099306 (third derivative of n).
Cf. A258644 (fourth derivative of n).
Cf. A258645 (fifth derivative of n).
Cf. A258646 (sixth derivative of n).
Cf. A258647 (seventh derivative of n).
Cf. A258648 (eighth derivative of n).
Cf. A258649 (ninth derivative of n).
Cf. A258650 (tenth derivative of n).
Cf. A185232 (n-th derivative of n).
Cf. A258651 (A(n,k) = k-th arithmetic derivative of n).
Cf. A085731 (gcd(n,n')), A083345 (n'/gcd(n,n')), A057521 (gcd(n, (n')^k) for k>1).
Cf. A342014 (n' mod n), A369049 (n mod n').
Cf. A341998 (A003557(n')), A342001 (n'/A003557(n)).
Cf. A098699 (least x such that x' = n, antiderivative of n).
Cf. A098700 (n such that x' = n has no integer solution).
Cf. A099302 (number of solutions to x' = n).
Cf. A099303 (greatest x such that x' = n).
Cf. A051674 (n such that n' = n).
Cf. A083347 (n such that n' < n).
Cf. A083348 (n such that n' > n).
Cf. A099304 (least k such that (n+k)' = n' + k').
Cf. A099305 (number of solutions to (n+k)' = n' + k').
Cf. A328235 (least k > 0 such that (n+k)' = u * n' for some natural number u).
Cf. A328236 (least m > 1 such that (m*n)' = u * n' for some natural number u).
Cf. A099307 (least k such that the k-th arithmetic derivative of n is zero).
Cf. A099308 (k-th arithmetic derivative of n is zero for some k).
Cf. A099309 (k-th arithmetic derivative of n is nonzero for all k).
Cf. A129150 (n-th derivative of 2^3).
Cf. A129151 (n-th derivative of 3^4).
Cf. A129152 (n-th derivative of 5^6).
Cf. A189481 (x' = n has a unique solution).
Cf. A190121 (partial sums).
Cf. A258057 (first differences).
Cf. A229501 (n divides the n-th partial sum).
Cf. A165560 (parity).
Cf. A235991 (n' is odd), A235992 (n' is even).
Cf. A327863, A327864, A327865 (n' is a multiple of 3, 4, 5).
Cf. A157037 (n' is prime), A192192 (n'' is prime), A328239 (n''' is prime).
Cf. A328393 (n' is squarefree), A328234 (squarefree and > 1).
Cf. A328244 (n'' is squarefree), A328246 (n''' is squarefree).
Cf. A328303 (n' is not squarefree), A328252 (n' is squarefree, but n is not).
Cf. A328248 (least k such that the (k-1)-th derivative of n is squarefree).
Cf. A328251 (k-th arithmetic derivative is never squarefree for any k >= 0).
Cf. A256750 (least k such that the k-th derivative is either 0 or has a factor p^p).
Cf. A327928 (number of distinct primes p such that p^p divides n').
Cf. A342003 (max. exponent k for any prime power p^k that divides n').
Cf. A327929 (n' has at least one divisor of the form p^p).
Cf. A327978 (n' is primorial number > 1).
Cf. A328243 (n' is a partial sum of primorial numbers and larger than one).
Cf. A328310 (maximal prime exponent of n' minus maximal prime exponent of n).
Cf. A328320 (max. prime exponent of n' is less than that of n).
Cf. A328321 (max. prime exponent of n' is >= that of n).
Cf. A328383 (least k such that the k-th derivative of n is either a multiple or a divisor of n, but not both).
Cf. A263111 (the ordinal transform of a).
Cf. A300251, A319684 (Möbius and inverse Möbius transform).
Cf. A305809 (Dirichlet convolution square).
Cf. A349133, A349173, A349394, A349380, A349618, A349619, A349620, A349621 (for miscellaneous Dirichlet convolutions).
Cf. A069359 (similar formula which agrees on squarefree numbers).
Cf. A258851 (the pi-based arithmetic derivative of n).
Cf. A328768, A328769 (primorial-based arithmetic derivatives of n).
Cf. A328845, A328846 (Fibonacci-based arithmetic derivatives of n).
Cf. A302055, A327963, A327965, A328099 (for other variants and modifications).
Cf. A038554 (another sequence using "derivative" in its name, but involving binary expansion of n).
Cf. A322582, A348507 (lower and upper bounds), also A002620.
KEYWORD
nonn,easy,nice,hear,look
EXTENSIONS
More terms from Michel ten Voorde, Apr 11 2001
STATUS
approved

Search completed in 0.014 seconds