[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a085748 -id:a085748
     Sort: relevance | references | number | modified | created      Format: long | short | data
G.f. A(x) satisfies x*A(x)^3 = B(x*A(x^3)) where B(x) = x/(1 - 3*x).
+10
5
1, 1, 2, 5, 13, 35, 97, 273, 778, 2240, 6499, 18976, 55703, 164243, 486130, 1443620, 4299365, 12836825, 38413933, 115184282, 346005073, 1041072108, 3137060983, 9465689545, 28596915843, 86492865522, 261876842801, 793661873276
OFFSET
0,3
COMMENTS
More generally, given A(x) satisfies x*A(x)^p = B(x*A(x^p)) where B(x) = x/(1-p*x), then it appears that A(x) is an integer series only when p is prime. This is a special case of sequences with g.f.s that satisfy the more general functional equation x*A(x)^m = B(x*A(x^m)) studied by Michael Somos; some other examples are A085748, A091188 and A091200.
LINKS
FORMULA
From Paul D. Hanna, Mar 09 2024: (Start)
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = A(x^3) / (1 - 3*x*A(x^3)).
(2) A(x) = x/Series_Reversion(D(x)) where D(x) = x*A(D(x)) is the g.f. of A370441.
(End)
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 97*x^6 + 273*x^7 + 778*x^8 + 2240*x^9 + 6499*x^10 + 18976*x^11 + 55703*x^12 + ...
where A(x)^3 = A(x^3) / (1 - 3*x*A(x^3)).
RELATED SERIES.
A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 87*x^4 + 270*x^5 + 839*x^6 + 2607*x^7 + 8100*x^8 + 25169*x^9 + 78207*x^10 + 243009*x^11 + 755095*x^12 + ...
Also, D(x) = x*A(D(x)) is the g.f. of A370441, which begins
D(x) = x + x^2 + 3*x^3 + 12*x^4 + 54*x^5 + 261*x^6 + 1324*x^7 + 6952*x^8 + 37461*x^9 + ... + A370441(n)*x^n + ...
such that D(x)^3 = D( x^3 + 3*D(x)^4 ).
MATHEMATICA
m = 28; B[x_] = x/(1 - 3 x); A[_] = 1;
Do[A[x_] = (B[x A[x^3]]/x)^(1/3) + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 29 2019 *)
PROG
(PARI) {a(n) = my(A, p=3, m=1); if(n<0, 0, m=1; A=1+O(x); while(m<=n, m*=p; A = x*subst(A, x, x^p); A = (A/(1-p*A)/x)^(1/p)); polcoeff(A, n))}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 22 2004
EXTENSIONS
Corrected by T. D. Noe, Oct 25 2006
STATUS
approved
G.f. A(x) satisfies xA(x)^5 = B(xA(x^5)) where B(x) = x/(1-5x).
+10
4
1, 1, 3, 11, 44, 185, 802, 3553, 15994, 72886, 335387, 1555487, 7261310, 34083382, 160730900, 761039051, 3616102911, 17235223345, 82372594183, 394648349447, 1894921311499, 9116598414141, 43939539520427, 212124129983285
OFFSET
0,3
COMMENTS
More generally, given A(x) satisfies xA(x)^p = B(xA(x^p)) where B(x) = x/(1-p*x), then it appears that A(x) is an integer series only when p is prime. This is a special case of sequences with g.f.s that satisfy the more general functional equation xA(x)^m = B(xA(x^m)) originated by Michael Somos; some other examples are A085748, A091188 and A091190.
PROG
(PARI) {a(n)=local(A, m); p=5; if(n<0, 0, m=1; A=1+O(x); while(m<=n, m*=p; A=x*subst(A, x, x^p); A=(A/(1-p*A)/x)^(1/p)); polcoeff(A, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 23 2004
STATUS
approved
G.f. A(x) satisfies both A(-x)*A(x) = A(x^2) and xA(x)^2 = B(xA(x^2)) where B(x) = x*(1+x)/(1-x).
+10
3
1, 1, 1, 2, 2, 4, 5, 10, 12, 23, 31, 58, 79, 145, 207, 374, 540, 964, 1427, 2522, 3775, 6626, 10050, 17532, 26811, 46561, 71795, 124188, 192661, 332228, 518303, 891340, 1396902, 2396912, 3771822, 6459202, 10199912, 17437727, 27622807, 47152952
OFFSET
0,4
COMMENTS
This is a special case of sequences with g.f.s that satisfy the more general functional equation xA(x)^m = B(xA(x^m)) originated by Michael Somos; some other examples are A085748, A091190 and A091200.
FORMULA
Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^2)) were f(u, v) = u^2 * (1 - v) - v * (1 + v). - Michael Somos, Aug 02 2011
EXAMPLE
1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 10*x^7 + 12*x^8 + 23*x^9 + ...
q + q^3 + q^5 + 2*q^7 + 2*q^9 + 4*q^11 + 5*q^13 + 10*q^15 + 12*q^17 + ...
PROG
(PARI) {a(n) = local(A, m); if( n<0, 0, m=1; A = 1 + O(x); while( m<=n, m*=2; A = x * subst(A, x, x^2); A = (A *(1 + A) /(1 - A) / x)^(1/2)); polcoeff(A, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 22 2004
STATUS
approved
Number of rooted binary trees (in which all inner nodes have precisely two children) with n leaves and with maximal number of cherries (i.e., maximal number of pendant subtrees with two leaves).
+10
2
1, 1, 1, 1, 2, 1, 4, 2, 9, 3, 20, 6, 46, 11, 106, 23, 248, 46, 582, 98, 1376, 207, 3264, 451, 7777, 983, 18581, 2179, 44526, 4850, 106936, 10905, 257379, 24631, 620577, 56011, 1498788, 127912, 3625026, 293547, 8779271, 676157, 21287278, 1563372, 51671864, 3626149, 125550018
OFFSET
1,5
COMMENTS
This sequence describes the number of rooted binary trees with n leaves with maximal cherry tree balance index or, equivalently, with minimal modified cherry tree balance index.
LINKS
S. J. Kersting and M. Fischer, Measuring tree balance using symmetry nodes - a new balance index and its extremal properties, arXiv:2105.00719 [q-bio.PE], 2021.
FORMULA
a(n) = A001190(n/2) if n even, otherwise a(n) = A085748((n-1)/2).
MAPLE
b:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
(t-> t*(1-t)/2)(b(n/2)))+add(b(i)*b(n-i), i=1..n/2))
end:
g:= proc(n) option remember; `if`(n<1, 1,
add(g(n-i)*b(i), i=1..n))
end:
a:= n-> `if`(n::even, b(n/2), g((n-1)/2)):
seq(a(n), n=1..52); # Alois P. Heinz, Jun 09 2021
MATHEMATICA
(* WE generates the Wedderburn Etherington Numbers, OEIS sequence A001190 *)
WE[n_] := Module[{i},
If[n == 1, Return[1],
If[Mod[n, 2] == 0,
Return[
WE[n/2]*(WE[n/2] + 1)/2 + Sum[WE[i]*WE[n - i], {i, 1, n/2 - 1}]],
Return[Sum[WE[i]*WE[n - i], {i, 1, Floor[n/2]}]]
]
]
];
(* b is just a support function *)
b[n_] := b[n] =
If[n < 2, n,
If[OddQ[n], 0, Function[t, t*(1 - t)/2][b[n/2]]] +
Sum[b[i]*b[n - i], {i, 1, n/2}]];
(* c generates the elements of OEIS sequence A085748 *)
c[n_] := c[n] = If[n < 1, 1, Sum[c[n - i]*b[i], {i, 1, n}]];
(* a generates the number of rooted binary trees with maximal number of cherries *)
a[n_] := Module[{},
If[EvenQ[n], Return[WE[n/2]], Return[c[(n - 1)/2]]]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Mareike Fischer, Jun 09 2021
STATUS
approved

Search completed in 0.005 seconds