[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a072597 -id:a072597
     Sort: relevance | references | number | modified | created      Format: long | short | data
E.g.f.: 1/(1-x*exp(x)).
(Formerly M3578)
+10
80
1, 1, 4, 21, 148, 1305, 13806, 170401, 2403640, 38143377, 672552730, 13044463641, 276003553860, 6326524990825, 156171026562838, 4130464801497105, 116526877671782896, 3492868475952497313, 110856698175372359346, 3713836169709782989993, 130966414749485504586940
OFFSET
0,3
COMMENTS
a(n) is the sum of the row entries of triangle A199673, that is, a(n) is the number of ways to assign n people into labeled groups and then to assign a leader for each group from its members; see example below. - Dennis P. Walsh, Nov 15 2011
a(n) is the number of functions f:{1,2,...,n}->{1,2,...,n} (endofunctions) such that for some j>1, f^j=f where f^j denotes iterated functional composition. Equivalently, the number of endofunctions such that every element is mapped to a recurrent element. Equivalently, every vertex of the functional digraph is at a distance at most 1 from a cycle. - Geoffrey Critzer, Jan 21 2012
Numerators in rational approximations of Lambert W(1). See Ramanujan, Notebooks, volume 2, page 22: "2. If e^{-x} = x, shew that the convergents to x are 1/2, 4/7, 21/37, 148/261, &c." - Michael Somos, Jan 21 2019
REFERENCES
S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2, see page 22.
Getu, S.; Shapiro, L. W.; Combinatorial view of the composition of functions. Ars Combin. 10 (1980), 131-145.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.32(d).
FORMULA
a(n) = n! * Sum_{k=0..n}(n-k)^k/k!.
a(n) = Sum_{k=0..n} k!*k^(n-k)*binomial(n,k).
For n>=1, a(n-1) = b(n) where b(1)=1 and b(n) = Sum_{i=1..n-1} i*binomial(n-1, i)*b(i). - Benoit Cloitre, Nov 13 2004
a(n) = Sum_{k=1..n}A199673(n,k) = Sum_{k=1..n}n! k^(n-k)/(n-k)!. - Dennis P. Walsh, Nov 15 2011
E.g.f. for a(n), n>=1: x*e^x/(1-x*e^x). - Dennis P. Walsh, Nov 15 2011
a(n) ~ n! / ((1+LambertW(1))*LambertW(1)^n). - Vaclav Kotesovec, Jun 21 2013\
O.g.f.: Sum_{n>=0} n! * x^n / (1 - n*x)^(n+1). - Paul D. Hanna, May 22 2018
a(0) = 1; a(n) = n * Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 12 2020
EXAMPLE
a(3) = 21 since there are 21 ways to assign 3 people into labeled groups with designated leaders. If there is one group, there are 3 ways to select a leader from the 3 people in the group. If there are two groups (group 1 and group 2), there are 6 ways to assign leaders and then 2 ways to select a group for the remaining person, and thus there are 12 assignments. If there are three groups (group1, group 2, and group3), each person is a leader of their singleton group, and there are 6 ways to assign the 3 people to the 3 groups. Hence a(3) = 3 + 12 + 6 = 21.
a(4) = 148 = 4 + 48 + 72 + 24.
MAPLE
a := proc(n) local k; add(k^(n-k)*n!/(n-k)!, k=1..n); end; # for n >= 1
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/(1-x Exp[x]), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Aug 29 2012 *)
a[ n_] := If[n < 0, 0, n! + n! Sum[(n - k)^k / k!, {k, n}]]; (* Michael Somos, Jan 21 2019 *)
PROG
(PARI) x='x+O('x^66);
egf=1/(1-x*exp(x)); /* = 1 + x + 2*x^2 + 7/2*x^3 + 37/6*x^4 + 87/8*x^5 +... */
Vec(serlaplace(egf)) /* Joerg Arndt, Apr 30 2011 */
(PARI) {a(n) = if(n<0, 0, n! * sum(k=0, n, (n-k)^k / k!))}; /* Michael Somos, Jan 21 2019 */
(Sage)
def A006153_list(len):
f, R, C = 1, [1], [1]+[0]*(len-1)
for n in (1..len-1):
f *= n
for k in range(n, 0, -1):
C[k] = -C[k-1]*(1/(k-1) if k>1 else 1)
C[0] = sum((-1)^k*C[k] for k in (1..n))
R.append(C[0]*f)
return R
print(A006153_list(20)) # Peter Luschny, Feb 21 2016
CROSSREFS
Row sums of triangle A199673.
KEYWORD
nonn,easy,nice
EXTENSIONS
Definition corrected by Joerg Arndt, Apr 30 2011
STATUS
approved
Array read by antidiagonals: A(n,k) = (k+1)^n*(n+k)!/n!.
+10
14
1, 1, 1, 1, 4, 2, 1, 12, 18, 6, 1, 32, 108, 96, 24, 1, 80, 540, 960, 600, 120, 1, 192, 2430, 7680, 9000, 4320, 720, 1, 448, 10206, 53760, 105000, 90720, 35280, 5040, 1, 1024, 40824, 344064, 1050000, 1451520, 987840, 322560, 40320
OFFSET
0,5
COMMENTS
A009998/A119502 gives triangle of unreduced coefficients of polynomials defined by A152650/A152656. a(n) gives numerators with denominators n! for each row.
Row 0 is A000142. Row 1 is formed from positive members of A001563. Row 2 is A055533. Column 0 is A000012. Column 1 is formed from positive members of A001787. Column 2 is A006043. Column 3 is A006044. - Omar E. Pol, Jan 06 2009
LINKS
F. A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. See page 422.
F. A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424. (Annotated scanned copy)
FORMULA
E.g.f. for array as a triangle: exp(x)/(1-t*x*exp(x)) = 1+(1+t)*x+(1+4*t+2*t^2)*x^2/2! + (1+12*t+18*t^2+6*t^3)*x^3/3! + .... E.g.f. is int {z = 0..inf} exp(-z)*F(x,t*z), (x and t chosen sufficiently small for the integral to converge), where F(x,t) = exp(x*(1+t*exp(x))) is the e.g.f. for A154372. - Peter Bala, Oct 09 2011
From Peter Bala, Oct 09 2011: (Start)
From the e.g.f., the row polynomials R(n,t) satisfy the recursion R(n,t) = 1 + t*sum {k = 0..n-1} n!/(k!*(n-k-1)!)*R(n-k-1,t). The polynomials 1/n!*R(n,x) are the polynomials P(n,x) of A152650.
Sum_{k=0..n} T(n, k) = A072597(n) (antidiagonal sums). (End)
From G. C. Greubel, Apr 10 2023: (Start)
T(n, k) = (k+1)^(n-k) * k! * binomial(n, k) (antidiagonal triangle).
Sum_{k=0..n} (-1)^k*T(n, k) = A089148(n). (End)
EXAMPLE
From Omar E. Pol, Jan 06 2009: (Start)
Array begins:
1, 1, 2, 6, 24, 120, ...
1, 4, 18, 96, 600, 4320, ...
1, 12, 108, 960, 9000, 90720, ...
1, 32, 540, 7680, 105000, 1451520, ...
1, 80, 2430, 53760, 1050000, 19595520, ...
1, 192, 10206, 344064, 9450000, 235146240, ...
1, 448, 40824, 2064384, 78750000, 2586608640, ...
1, 1024, 157464, 11796480, 618750000, 26605117440, ...
1, 2304, 590490, 64880640, 4640625000, 259399895040, ... (End)
Antidiagonal triangle:
1;
1, 1;
1, 4, 2;
1, 12, 18, 6;
1, 32, 108, 96, 24;
1, 80, 540, 960, 600, 120;
1, 192, 2430, 7680, 9000, 4320, 720;
1, 448, 10206, 53760, 105000, 90720, 35280, 5040;
MATHEMATICA
len= 45; m= 1 + Ceiling[Sqrt[len]]; Sort[Flatten[#, 1] &[MapIndexed[ {(2 +#2[[1]]^2 +(#2[[2]] -1)*#2[[2]] +#2[[1]]*(2*#2[[2]] -3))/ 2, #1}&, Table[(k+1)^n*(n+k)!/n!, {n, 0, m}, {k, 0, m}], {2}]]][[All, 2]][[1 ;; len]] (* From Jean-François Alcover, May 27 2011 *)
T[n_, k_]:= (k+1)^(n-k)*k!*Binomial[n, k];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 10 2023 *)
PROG
(Sage)
def A152818_row(n):
R.<x> = ZZ[]
P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n))
return P.coefficients()
for n in (0..12): print(A152818_row(n)) # Peter Luschny, May 03 2013
(PARI) A(n, k) = (k+1)^n*(n+k)!/n! \\ Charles R Greathouse IV, Sep 10 2016
(Magma)
A152818:= func< n, k | (k+1)^(n-k)*Factorial(k)*Binomial(n, k) >;
[A152818(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2023
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul Curtz, Dec 13 2008
EXTENSIONS
Better definition, extended and edited by Omar E. Pol and N. J. A. Sloane, Jan 05 2009
STATUS
approved
Expansion of e.g.f.: (1+x) / (exp(-x) - x).
+10
8
1, 3, 11, 58, 409, 3606, 38149, 470856, 6641793, 105398650, 1858413061, 36044759796, 762659322385, 17481598316742, 431535346662645, 11413394655983536, 321989729198400385, 9651573930139850610, 306321759739045148293, 10262156907184058219340
OFFSET
0,2
FORMULA
a(n) ~ n! / LambertW(1)^(n+1).
a(n) = (-1)^n * A009444(n+1).
a(n) = Sum_{k=0..n+1} (n+1)!*(n-k+1)^(k-1)/k! for n > 0. - Detlef Meya, Sep 05 2023
MATHEMATICA
nmax = 20; CoefficientList[Series[(1+x)/(E^(-x)-x), {x, 0, nmax}], x] * Range[0, nmax]!
a={1}; For[n=1, n<20, n++, AppendTo[a, Sum[(n!)*((n-k+1)^(k-1))*(n+1)/(k!), {k, 0, n+1}]]]; a (* Detlef Meya, Sep 05 2023 *)
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 16 2018
STATUS
approved
Expansion of e.g.f. exp(2*x) / (1 - x*exp(x)).
+10
8
1, 3, 12, 65, 460, 4057, 42922, 529769, 7472808, 118586033, 2090936014, 40554647377, 858082563532, 19668880007129, 485528656965762, 12841428220413593, 362276791422785488, 10859170086870710497, 344648459867067117334, 11546148650974694099201
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} (n-k+2)^k / k!.
a(n) ~ n! / ((1 + LambertW(1)) * LambertW(1)^(n+2)). - Vaclav Kotesovec, Dec 29 2023
PROG
(PARI) a(n) = n!*sum(k=0, n, (n-k+2)^k/k!);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 19 2023
STATUS
approved
Expansion of e.g.f. 1/( exp(-x) - x )^2.
+10
8
1, 4, 22, 158, 1408, 15002, 186100, 2634998, 41937136, 741170834, 14402727484, 305225470046, 7005711916840, 173134991854970, 4583675648417044, 129424786945875398, 3882446011526729440, 123304773913531035170, 4133369745467043807340, 145840627118145774415214
OFFSET
0,2
LINKS
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A072597.
a(n) = n! * Sum_{k=0..n} (k+1) * (k+2)^(n-k)/(n-k)!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(exp(-x)-x)^2))
(PARI) a(n) = n!*sum(k=0, n, (k+1)*(k+2)^(n-k)/(n-k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 06 2025
STATUS
approved
Expansion of e.g.f. 1/(exp(x)-x*exp(2*x)).
+10
6
1, 0, 3, 11, 85, 739, 7831, 96641, 1363209, 21632759, 381433771, 7398080029, 156533563693, 3588046200179, 88571349871551, 2342565398442569, 66087436823953681, 1980956920420309231, 62871632567144951635, 2106277265332074827573, 74276723394195659799861
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} (n-k-1)^k/k!. [Corrected by Georg Fischer, Jun 22 2022]
a(n) ~ n! / ((LambertW(1) + 1) * LambertW(1)^(n-1)). - Vaclav Kotesovec, Jun 22 2022
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/(Exp[x]-x Exp[2x]), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Sep 19 2020 *)
PROG
(PARI) a(n)=n!*sum(k=0, n, (n-k-1)^k/k!)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Mar 31 2004
EXTENSIONS
Corrected and extended by Harvey P. Dale, Sep 19 2020
STATUS
approved
E.g.f.: 1 / (exp(-3*x) - x).
+10
6
1, 4, 23, 195, 2229, 31863, 546255, 10925757, 249753897, 6422808411, 183524701779, 5768419379913, 197791542799965, 7347180526444359, 293912722687075767, 12597352573293062757, 575928946256877156177, 27976119070974574461363, 1438896686251112024068251
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} (3 * (n-k+1))^k / k!.
a(0) = 1; a(n) = 4 * n * a(n-1) - Sum_{k=2..n} binomial(n,k) * (-3)^k * a(n-k).
a(n) ~ n! / ((1 + LambertW(3)) * (LambertW(3)/3)^(n+1)). - Vaclav Kotesovec, Aug 09 2021
MATHEMATICA
nmax = 18; CoefficientList[Series[1/(Exp[-3 x] - x), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(3 (n - k + 1))^k/k!, {k, 0, n}], {n, 0, 18}]
a[0] = 1; a[n_] := a[n] = 4 n a[n - 1] - Sum[Binomial[n, k] (-3)^k a[n - k], {k, 2, n}]; Table[a[n], {n, 0, 18}]
PROG
(PARI) seq(n)={ Vec(serlaplace(1 / (exp(-3*x + O(x*x^n)) - x))) } \\ Andrew Howroyd, Aug 08 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 08 2020
STATUS
approved
Expansion of e.g.f. 1/( exp(-x) - x )^4.
+10
6
1, 8, 76, 844, 10776, 155844, 2520856, 45125924, 886037216, 18938440324, 437820992136, 10886467502244, 289738784758096, 8218731027307844, 247539834718198136, 7889896358130120484, 265325716114102815936, 9388476560982511842564, 348703400008471862936296
OFFSET
0,2
FORMULA
E.g.f.: B(x)^4, where B(x) is the e.g.f. of A072597.
a(n) = n! * Sum_{k=0..n} (k+4)^(n-k) * binomial(k+3,3)/(n-k)!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(exp(-x)-x)^4))
(PARI) a(n) = n!*sum(k=0, n, (k+4)^(n-k)*binomial(k+3, 3)/(n-k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 07 2025
STATUS
approved
E.g.f. A(x) satisfies: A(x) = exp( Integral B(x) dx ) such that B(x) = exp(x) * exp( Integral A(x) dx ), where the constant of integration is zero.
+10
5
1, 1, 3, 12, 62, 395, 2994, 26331, 263729, 2964845, 36975858, 506687604, 7568226163, 122388728056, 2130425343621, 39718373337525, 789613850257051, 16674806980716514, 372771700023167862, 8794945626017009781, 218392778569695964100, 5693513850197410142081, 155482323312112362743373, 4438621019461797437443233, 132210153223378852014571364, 4101859859297789141335079684, 132343983668857026899533814277
OFFSET
0,3
COMMENTS
Compare to: G(x) = exp( Integral G(x) dx ) when G(x) = 1/(1-x).
What is Limit (a(n)/n!)^(1/n) ? Example: (a(300)/300!)^(1/300) = 1.2409703...
Limit (a(n)/n!)^(1/n) = 1/Integral_{x=0..infinity} 1/(x + exp(x)) dx = 1.24008610649849766623949... - Vaclav Kotesovec, Aug 21 2017
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) A(x) = exp( Integral A(x) + log(A(x)) dx ).
(2) A(x) = A'(x)/A(x) - log(A(x)).
(3) log(A(x)) = exp(x) * Integral exp(-x)*A(x) dx.
(4) A(x) = exp( Series_Reversion( Integral 1/(exp(x) + x) dx ) ).
a(n) ~ c^(n+1) * n!, where c = 1/Integral_{x=0..infinity} 1/(x + exp(x)) dx = 1.2400861064984976662394901721056528110217273471501174317019052800276... - Vaclav Kotesovec, Aug 21 2017
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 12*x^3/3! + 62*x^4/4! + 395*x^5/5! + 2994*x^6/6! + 26331*x^7/7! + 263729*x^8/8! + 2964845*x^9/9! + 36975858*x^10/10! +...
such that log(A(x)) = Integral B(x) dx
where
B(x) = 1 + 2*x + 5*x^2/2! + 17*x^3/3! + 79*x^4/4! + 474*x^5/5! + 3468*x^6/6! + 29799*x^7/7! + 293528*x^8/8! + 3258373*x^9/9! + 40234231*x^10/10! +...
and A(x) and B(x) satisfy:
(1) A(x) = B'(x)/B(x) - 1,
(2) B(x) = A'(x)/A(x),
(3) B(x) = A(x) + log(A(x)),
(4) log(A(x)) = Integral B(x) dx,
(5) log(B(x)) = Integral A(x) dx + x.
The Series Reversion of log(A(x)) equals Integral 1/(exp(x) + x) dx:
Integral 1/(exp(x) + x) dx = x - 2*x^2/2! + 7*x^3/3! - 37*x^4/4! + 261*x^5/5! - 2301*x^6/6! + 24343*x^7/7! - 300455*x^8/8! + 4238153*x^9/9! - 67255273*x^10/10! +...+ (-1)^(n-1)*A072597(n-1)*x^n/n! +...
so that A( Integral 1/(exp(x) + x) dx ) = exp(x).
MATHEMATICA
a[ n_] := a[n] = If[ n < 1, Boole[n == 0], Sum[ Binomial[n - 1, k - 1] a[n - k] Sum[ a[k - j], {j, k}], {k, n}]]; (* Michael Somos, Aug 08 2017 *)
PROG
(PARI) {a(n) = my(A=1+x, B=1+x); for(i=0, n, A = exp( intformal( B + x*O(x^n) ) ); B = exp( intformal( 1 + A ) ) ); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = n! * polcoeff( exp( serreverse( intformal( 1/(exp(x +x*O(x^n)) + x) ) )), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 24 2016
STATUS
approved
E.g.f.: 1 / (exp(-2*x) - x).
+10
5
1, 3, 14, 98, 920, 10792, 151888, 2494032, 46803072, 988095104, 23178247424, 598074306304, 16835199087616, 513385352524800, 16859837094942720, 593234633904293888, 22265289445252628480, 887889931920920313856, 37489832605652634763264, 1670894259596134872711168
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} (2 * (n-k+1))^k / k!.
a(0) = 1; a(n) = 3 * n * a(n-1) - Sum_{k=2..n} binomial(n,k) * (-2)^k * a(n-k).
a(n) ~ n! / ((1 + LambertW(2)) * (LambertW(2)/2)^(n+1)). - Vaclav Kotesovec, Aug 09 2021
MATHEMATICA
nmax = 19; CoefficientList[Series[1/(Exp[-2 x] - x), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(2 (n - k + 1))^k/k!, {k, 0, n}], {n, 0, 19}]
a[0] = 1; a[n_] := a[n] = 3 n a[n - 1] - Sum[Binomial[n, k] (-2)^k a[n - k], {k, 2, n}]; Table[a[n], {n, 0, 19}]
PROG
(PARI) seq(n)={ Vec(serlaplace(1 / (exp(-2*x + O(x*x^n)) - x))) } \\ Andrew Howroyd, Aug 08 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 08 2020
STATUS
approved

Search completed in 0.010 seconds