[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a077466 -id:a077466
     Sort: relevance | references | number | modified | created      Format: long | short | data
Values of n such that A006046(n)/n^theta, where theta=log(3)/log(2), is a local minimum, computed according to Harborth's recurrence.
+10
10
1, 3, 5, 11, 21, 43, 87, 173, 347, 693, 1387, 2775, 5549, 11099, 22197, 44395, 88789, 177579, 355159, 710317, 1420635, 2841269, 5682539, 11365079, 22730157, 45460315, 90920629, 181841259, 363682519, 727365037, 1454730075
OFFSET
1,2
COMMENTS
Harborth's recurrence can miss local minima that are 2 less than values in this sequence. A complete listing of cumulative minima is given by A084230.
LINKS
H. Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc. 62, 19-22, 1977.
Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Eric W. Weisstein, Nov 05 2002
STATUS
approved
Stolarsky-Harborth constant; lim inf_{n->oo} F(n)/n^theta, where F(n) is the number of odd binomial coefficients in the first n rows and theta=log(3)/log(2).
+10
4
8, 1, 2, 5, 5, 6, 5, 5, 9, 0, 1, 6, 0, 0, 6, 3, 8, 7, 6, 9, 4, 8, 8, 2, 1, 0, 1, 6, 4, 9, 5, 3, 6, 7, 1, 2, 4, 3, 4, 4, 1, 9, 2, 2, 4, 9, 0, 6, 3, 6, 1, 5, 6, 6, 7, 8, 3, 2, 0, 3, 4, 7, 5, 8, 0, 3, 6, 6, 0, 0, 3, 1, 4, 2, 7, 6, 2, 9, 5, 3, 5, 0, 8, 2, 4, 6, 8, 4, 8, 9, 8, 2, 7, 9, 7, 9, 3, 7, 8, 6, 9
OFFSET
0,1
COMMENTS
The limit supremum of F(n)/n^theta is 1. - Charles R Greathouse IV, Oct 30 2016
Named by Finch (2003) after Kenneth B. Stolarsky and Heiko Harborth. Stolarsky (1977) evaluated that its value is in the interval [0.72, 0.815], and Harborth (1977) calculated the value 0.812556. - Amiram Eldar, Dec 03 2020
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 145-151.
LINKS
Heiko Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc., Vol. 62, No. 1 (1977), pp. 19-22.
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Periodic minimum in the count of binomial coefficients not divisible by a prime, arXiv:2408.06817 [math.NT], 2024. See pp. 2, 4.
Kenneth B. Stolarsky, Digital sums and binomial coefficients, Notices of the American Mathematical Society, Vol. 22, No. 6 (1975), A-669, entire volume.
Kenneth B. Stolarsky, Power and Exponential Sums of Digital Sums Related to Binomial Coefficient Parity, SIAM J. Appl. Math., Vol. 32, No. 4 (1977), pp. 717-730.
Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant.
Eric Weisstein's World of Mathematics, Pascal's Triangle.
FORMULA
Equals lim inf_{n->oo} A006046(n)/n^A020857. - Amiram Eldar, Dec 03 2020
EXAMPLE
0.812556559016006387694882...
CROSSREFS
KEYWORD
nonn,cons,changed
AUTHOR
Eric W. Weisstein, Nov 06 2002
STATUS
approved
Sum of binary digits of A077465(n).
+10
4
1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 35, 36, 36, 37, 37, 38, 39, 39, 40, 40, 41, 41, 42, 43, 43, 44
OFFSET
1,2
LINKS
H. Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc. 62, 19-22, 1977.
Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant
CROSSREFS
KEYWORD
nonn,base,changed
AUTHOR
Eric W. Weisstein, Nov 05 2002
STATUS
approved

Search completed in 0.006 seconds