[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a061019 -id:a061019
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Sum_{d|n} A061019(d) * A003961(n/d), where A061019 negates the primes in the prime factorization, while A003961 shifts the factorization one step towards larger primes.
+20
7
1, 1, 2, 7, 2, 2, 4, 13, 19, 2, 2, 14, 4, 4, 4, 55, 2, 19, 4, 14, 8, 2, 6, 26, 39, 4, 68, 28, 2, 4, 6, 133, 4, 2, 8, 133, 4, 4, 8, 26, 2, 8, 4, 14, 38, 6, 6, 110, 93, 39, 4, 28, 6, 68, 4, 52, 8, 2, 2, 28, 6, 6, 76, 463, 8, 4, 4, 14, 12, 8, 2, 247, 6, 4, 78, 28, 8, 8, 4, 110, 421, 2, 6, 56, 4, 4, 4, 26, 8, 38, 16
OFFSET
1,3
COMMENTS
Dirichlet convolution of A003961 and A061019.
Dirichlet convolution of A003973 and A158523.
Multiplicative because A003961 and A061019 are.
All terms are positive because all terms of A347237 are nonnegative and A347237(1) = 1.
Union of sequences A001359 and A108605 (= 2*A001359) seems to give the positions of 2's in this sequence.
FORMULA
a(n) = Sum_{d|n} A003961(n/d) * A061019(d).
a(n) = Sum_{d|n} A003973(n/d) * A158523(d).
a(n) = Sum_{d|n} A347237(d).
a(n) = A347239(n) - A347238(n).
For all n >= 1, a(A000040(n)) = A001223(n).
Multiplicative with a(p^e) = (A151800(p)^(e+1)-(-p)^(e+1))/(A151800(p)+p). - Sebastian Karlsson, Sep 02 2021
MATHEMATICA
f[p_, e_] := ((np = NextPrime[p])^(e + 1) - (-p)^(e + 1))/(np + p); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 02 2021 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A061019(n) = (((-1)^bigomega(n))*n);
A347236(n) = sumdiv(n, d, A061019(d)*A003961(n/d));
CROSSREFS
Cf. A000040, A001223, A001359, A003961, A003973, A061019, A108605, A158523, A347237 (Möbius transform), A347238 (Dirichlet inverse), A347239.
Cf. also A347136.
Cf. A151800.
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Aug 24 2021
STATUS
approved
Partial sums of A061019.
+20
3
1, -1, -4, 0, -5, 1, -6, -14, -5, 5, -6, -18, -31, -17, -2, 14, -3, -21, -40, -60, -39, -17, -40, -16, 9, 35, 8, -20, -49, -79, -110, -142, -109, -75, -40, -4, -41, -3, 36, 76, 35, -7, -50, -94, -139, -93, -140, -188, -139, -189, -138, -190, -243, -189, -134
OFFSET
1,3
LINKS
MATHEMATICA
Accumulate[Table[n*(-1)^PrimeOmega[n], {n, 70}]] (* Harvey P. Dale, Apr 02 2015 *)
PROG
(Haskell)
a239122 n = a239122_list !! (n-1)
a239122_list = scanl1 (+) a061019_list
(Python)
from functools import reduce
from operator import ixor
from sympy import factorint
def A239122(n): return sum(-i if reduce(ixor, factorint(i).values(), 0)&1 else i for i in range(1, n+1)) # Chai Wah Wu, Jan 03 2023
CROSSREFS
Cf. A002819.
KEYWORD
sign
AUTHOR
Reinhard Zumkeller, Mar 10 2014
STATUS
approved
Negate primes in factorizations of divisors of n, then sum.
+10
16
1, -1, -2, 3, -4, 2, -6, -5, 7, 4, -10, -6, -12, 6, 8, 11, -16, -7, -18, -12, 12, 10, -22, 10, 21, 12, -20, -18, -28, -8, -30, -21, 20, 16, 24, 21, -36, 18, 24, 20, -40, -12, -42, -30, -28, 22, -46, -22, 43, -21, 32, -36, -52, 20, 40, 30, 36, 28, -58, 24, -60, 30, -42, 43, 48, -20, -66, -48, 44, -24, -70, -35
OFFSET
1,3
COMMENTS
Analog of sigma function A000203(n) with primes negated.
Unsigned sequence |a(n)| (A206369) gives the number of numbers 1 <= k <= n for which GCD(k,n) is a square. |a(n)| = Sum_{d|n} d*(-1)^bigomega(n/d). - Vladeta Jovovic, Dec 29 2002
LINKS
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, Involve, a Journal of Mathematics, Vol. 15, No. 2 (2022), pp. 251-270; arXiv preprint, arXiv:2012.04625 [math.CO], 2020-2021.
László Tóth, A survey of the alternating sum-of-divisors function, arXiv:1111.4842 [math.NT], 2011-2014.
FORMULA
Replace each divisor d of n by A061019[d] and sum. Replace p^q with (1-(-p)^(q+1))/(1+p) in prime factorization of n.
Inverse mobius transform of A061019. In other words a(n) = Sum_{d|n} d*(-1)^bigomega(d), where bigomega(n) = A001222(n).
a(n) = Sum_{d|n} d*mu(core(d)) where core(x) = A007913(x) is the smallest number such that x*core(x) is a square. - Benoit Cloitre, Apr 07 2002
G.f.: A(x) = Sum_{k>=1} lambda(k)*k*x^k/(1 - x^k) where lambda(k) is the Liouville function, A008836. - Stuart Clary, Apr 15 2006
G.f.: A(x) is x times the logarithmic derivative of A118206(x). - Stuart Clary, Apr 15 2006
Dirichlet g.f.: zeta(s)*zeta(2 s - 2)/zeta(s - 1). - Stuart Clary, Apr 15, 2006
a(n) = Sum_{d|n} d*lambda(d), where lambda(n) is A008836(n). - Enrique Pérez Herrero, Aug 29 2013
EXAMPLE
a(12) = 1-2-3+4+6-12 = (1-2+4)*(1-3) = -6.
MAPLE
with(numtheory):
A061020 := proc(n) local d; add(d*(-1)^bigomega(d), d=divisors(n)) end:
seq(A061020(n), n=1..72); # Peter Luschny, Aug 29 2013
MATHEMATICA
nmax = 72; Drop[ CoefficientList[ Series[ Sum[ LiouvilleLambda[k] k x^k/(1 - x^k), {k, 1, nmax} ], {x, 0, nmax} ], x ], 1 ] (* Stuart Clary, Apr 15 2006, updated by Jean-François Alcover, Dec 04 2017 *)
f[p_, e_] := ((-p)^(e+1)-1)/(-p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 24 2023 *)
PROG
(PARI) for(n=1, 100, print1(sumdiv(n, d, (d)*moebius(core(d))), ", "))
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, 1/(1-X)/(1+p*X))[n]) \\ Ralf Stephan
(PARI) A061020(n) = {my(f=factorint(n)); prod(k=1, #f[, 2], ((-f[k, 1])^(f[k, 2]+1)-1)/(-f[k, 1]-1))} \\ Andrew Lelechenko, Apr 22 2014
(Haskell)
a061020 = sum . map a061019 . a027750_row
-- Reinhard Zumkeller, Feb 08 2012
CROSSREFS
KEYWORD
easy,sign,mult
AUTHOR
Marc LeBrun, Apr 13 2001
STATUS
approved
Moebius transform of negated primes in factorization of n.
+10
7
1, -3, -4, 6, -6, 12, -8, -12, 12, 18, -12, -24, -14, 24, 24, 24, -18, -36, -20, -36, 32, 36, -24, 48, 30, 42, -36, -48, -30, -72, -32, -48, 48, 54, 48, 72, -38, 60, 56, 72, -42, -96, -44, -72, -72, 72, -48, -96, 56, -90, 72, -84, -54, 108, 72, 96, 80, 90, -60, 144, -62, 96, -96, 96, 84, -144, -68, -108, 96, -144
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (-1)^e*(p+1)*p^(e-1), e>0. a(1)=1.
a(n) = mu(n) * A061019(n) = A008683(n) * A061019(n) = A061020(n) * A007427(n) = A061020(n) * A007428(n) * A000012(n) = A007427(n) * A000012(n) * A061019(n) = A007428(n) * A000005(n) * A061019(n), where operation * denotes Dirichlet convolution. Dirichlet convolution of functions b(n), c(n) is function a(n) = b(n) * c(n) = Sum_{d|n} b(d)*c(n/d).
Inverse Moebius transform gives A061019.
a(n) = (-1)^A001222(n)*A001615(n).
Apparently the Dirichlet inverse of A048250. - R. J. Mathar, Jul 15 2010
Dirichlet g.f.: zeta(2*s-2)/(zeta(s-1)*zeta(s)). - Amiram Eldar, Jan 05 2023
EXAMPLE
a(72) = a(2^3*3^2) = (-1)^3*(2+1)*2^(3-1) * (-1)^2*(3+1)*3^(2-1) = (-12)*12 = -144.
MATHEMATICA
f[p_, e_] := (-1)^e*(p + 1)*p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 05 2023 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (-1)^f[i, 2]*(f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)); } \\ Amiram Eldar, Jan 05 2023
KEYWORD
sign,mult
AUTHOR
Jaroslav Krizek, Mar 20 2009
EXTENSIONS
More terms from Antti Karttunen, Nov 26 2024
STATUS
approved
Dirichlet inverse of A347236.
+10
4
1, -1, -2, -6, -2, 2, -4, 0, -15, 2, -2, 12, -4, 4, 4, 0, -2, 15, -4, 12, 8, 2, -6, 0, -35, 4, 0, 24, -2, -4, -6, 0, 4, 2, 8, 90, -4, 4, 8, 0, -2, -8, -4, 12, 30, 6, -6, 0, -77, 35, 4, 24, -6, 0, 4, 0, 8, 2, -2, -24, -6, 6, 60, 0, 8, -4, -4, 12, 12, -8, -2, 0, -6, 4, 70, 24, 8, -8, -4, 0, 0, 2, -6, -48, 4, 4, 4, 0, -8
OFFSET
1,3
COMMENTS
Multiplicative because A347236 is.
It seems that A046099 gives the positions of zeros.
This follows from the formula for a(p^e). - Sebastian Karlsson, Sep 01 2021
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d < n} A347236(n/d) * a(d).
a(n) = A347239(n) - A347236(n).
For all n >= 1, a(A000040(n)) = -A001223(n).
Multiplicative with a(p^e) = p - A151800(p) if e = 1, -p*A151800(p) if e = 2 and 0 if e > 2. - Sebastian Karlsson, Sep 01 2021
PROG
(PARI)
up_to = 16384;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A061019(n) = (((-1)^bigomega(n))*n);
A347236(n) = sumdiv(n, d, A061019(d)*A003961(n/d));
v347238 = DirInverseCorrect(vector(up_to, n, A347236(n)));
A347238(n) = v347238[n];
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Aug 24 2021
STATUS
approved
Expansion of Sum_{k>=1} lambda(k) * k * x^k/(1 + x^k) where lambda(k) is the Liouville function, A008836.
+10
3
1, -3, -2, 5, -4, 6, -6, -11, 7, 12, -10, -10, -12, 18, 8, 21, -16, -21, -18, -20, 12, 30, -22, 22, 21, 36, -20, -30, -28, -24, -30, -43, 20, 48, 24, 35, -36, 54, 24, 44, -40, -36, -42, -50, -28, 66, -46, -42, 43, -63, 32, -60, -52, 60, 40, 66, 36, 84, -58, 40, -60, 90, -42, 85, 48, -60, -66, -80, 44, -72, -70, -77, -72, 108, -42
OFFSET
1,2
COMMENTS
Related to the logarithmic derivative of A118207(x) and A118208(x).
Related to a signed variant of A022998 via Mobius inversion. - R. J. Mathar, Jul 03 2011
LINKS
FORMULA
a(n) = Sum_{d|n} (-1)^(n/d - 1)*lambda(d)*d, Dirichlet convolution of A061019 and A062157.
G.f.: A(x) is x times the logarithmic derivative of A118207(x).
G.f.: A(x) = A061020(x) - 2 A061020(x^2).
Dirichlet g.f.: zeta(s)*zeta(2s-2)*(1-2^(1-s))/zeta(s-1). - R. J. Mathar, Jul 03 2011
a(n) > 0 for n in A028260. - Michel Marcus, Dec 10 2016
Multiplicative with a(2^e) = ((-1)^e*2^(e+2) - 1)/3, and a(p^e) = (p*(-p)^e+1)/(p+1) for an odd prime p. - Amiram Eldar, Aug 12 2023
MATHEMATICA
nmax = 80; lambda[k_Integer?Positive] := If[ k > 1, (-1)^Total[ Part[Transpose[FactorInteger[k]], 2] ], 1 ]; Drop[ CoefficientList[ Series[ Sum[ lambda[k] k x^k/(1 + x^k), {k, 1, nmax} ], {x, 0, nmax} ], x ], 1 ]
f[p_, e_] := (p*(-p)^e+1)/(p+1); f[2, e_] := ((-1)^e*2^(e+2) - 1)/3; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Aug 12 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (-1)^(n/d - 1)*(-1)^vecsum(factor(d)[, 2])*d) \\ Michel Marcus, Dec 10 2016
KEYWORD
sign,easy,mult
AUTHOR
Stuart Clary, Apr 15 2006
STATUS
approved
Möbius transform of A347236.
+10
3
1, 0, 1, 6, 1, 0, 3, 6, 17, 0, 1, 6, 3, 0, 1, 42, 1, 0, 3, 6, 3, 0, 5, 6, 37, 0, 49, 18, 1, 0, 5, 78, 1, 0, 3, 102, 3, 0, 3, 6, 1, 0, 3, 6, 17, 0, 5, 42, 89, 0, 1, 18, 5, 0, 1, 18, 3, 0, 1, 6, 5, 0, 51, 330, 3, 0, 3, 6, 5, 0, 1, 102, 5, 0, 37, 18, 3, 0, 3, 42, 353, 0, 5, 18, 1, 0, 1, 6, 7, 0, 9, 30, 5, 0, 3, 78, 3, 0, 17
OFFSET
1,4
COMMENTS
Dirichlet convolution of A003972 (prime shifted phi) with A061019.
Dirichlet convolution of A003961 with A158523.
Multiplicative because A003972 and A061019 are, and also because A347236 is.
From Antti Karttunen, Aug 25 2021: (Start)
All terms are nonnegative because sequence is multiplicative and a(p^k) >= 0 for all primes p and k >= 0.
Proof: For any prime p, sequence a(p^k), k>=0, is obtained as an ordinary convolution of sequences (-p)^k and the first differences of q^k, where q = A151800(p). (E.g., for powers of 2, the sequences convolved are A122803 and A025192, giving A102901.) This convolution is an alternating sum, with the terms 1*(q-1)*q^(k-1), -(p)*(q-1)*q^(k-2), (p^2)*(q-1)*q^(k-3), -(p^3)*(q-1)*q^(k-4), ..., (p^(k-1))*(q-1), -(p^k), for odd k, with sum of each consecutive pair being nonnegative because q >= p+1, while with an even exponent k, the leftover term p^k at the end is also positive, thus the whole sum is nonnegative also in that case.
(End)
FORMULA
a(n) = Sum_{d|n} A008683(n/d) * A347236(d).
a(n) = Sum_{d|n} A003972(n/d) * A061019(d).
a(n) = Sum_{d|n} A003961(n/d) * A158523(d).
For all n >= 1, a(A000040(n)) = A001223(n) - 1.
For all n >= 0, a(2^n) = A102901(n).
For all n >= 0, a(3^n) = A120612(n).
Multiplicative with a(p^e) = (-p)^e + (A151800(p)-1)*(A151800(p)^e-(-p)^e)/(A151800(p)+p). - Sebastian Karlsson, Sep 02 2021
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A061019(n) = (((-1)^bigomega(n))*n);
A347237(n) = sumdiv(n, d, A061019(d)*eulerphi(A003961(n/d)));
\\ Or alternatively as:
A158523(n) = { my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); ((-1)^e)*(p+1)*(p^(e-1))); };
A347237(n) = sumdiv(n, d, A003961(n/d)*A158523(d));
CROSSREFS
Cf. also A347137.
Cf. A151800.
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Aug 24 2021
STATUS
approved
Sum of A347236 and its Dirichlet inverse.
+10
3
2, 0, 0, 1, 0, 4, 0, 13, 4, 4, 0, 26, 0, 8, 8, 55, 0, 34, 0, 26, 16, 4, 0, 26, 4, 8, 68, 52, 0, 0, 0, 133, 8, 4, 16, 223, 0, 8, 16, 26, 0, 0, 0, 26, 68, 12, 0, 110, 16, 74, 8, 52, 0, 68, 8, 52, 16, 4, 0, 4, 0, 12, 136, 463, 16, 0, 0, 26, 24, 0, 0, 247, 0, 8, 148, 52, 16, 0, 0, 110, 421, 4, 0, 8, 8, 8, 8, 26, 0, 8, 32
OFFSET
1,1
COMMENTS
It seems that A030059 gives the positions of all zeros.
FORMULA
a(n) = A347236(n) + A347238(n).
a(1) = 2, and for n >1, a(n) = -Sum_{d|n, 1<d<n} A347236(d) * A347238(n/d).
For all n >= 1, a(A030059(n)) = 0 and a(A030229(n)) = 2*A347236(A030229(n)).
For all n >= 1, a(A001248(n)) = A000290(A001223(n)).
PROG
(PARI)
up_to = 16384;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A061019(n) = (((-1)^bigomega(n))*n);
A347236(n) = sumdiv(n, d, A061019(d)*A003961(n/d));
v347238 = DirInverseCorrect(vector(up_to, n, A347236(n)));
A347238(n) = v347238[n];
A347239(n) = (A347236(n)+A347238(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 24 2021
STATUS
approved
Multiplicative sequence with a(p^e) = (-1)^e * p^(2*floor(e/2)) for prime p and e >= 0.
+10
1
1, -1, -1, 4, -1, 1, -1, -4, 9, 1, -1, -4, -1, 1, 1, 16, -1, -9, -1, -4, 1, 1, -1, 4, 25, 1, -9, -4, -1, -1, -1, -16, 1, 1, 1, 36, -1, 1, 1, 4, -1, -1, -1, -4, -9, 1, -1, -16, 49, -25, 1, -4, -1, 9, 1, 4, 1, 1, -1, 4, -1, 1, -9, 64, 1, -1, -1, -4, 1, -1, -1, -36, -1, 1, -25, -4, 1, -1, -1, -16
OFFSET
1,4
COMMENTS
Signed version of A008833.
FORMULA
a(n) = lambda(n) * A008833(n) for n > 0 where lambda(n) = A008836(n).
Dirichlet g.f.: zeta(2*s-2) / zeta(s).
Dirichlet inverse b(n), n > 0, is multiplicative with b(p) = 1 and b(p^e) = 1 - p^2 for prime p and e > 1.
Dirichlet convolution with A034444 equals A008833.
Equals Dirichlet convolution of A000010 and A061019.
Conjecture: a(n) = Sum_{k=1..n} gcd(k, n) * lambda(gcd(k, n)) for n > 0.
MAPLE
A358272 := proc(n)
local a, pe, e, p ;
a := 1;
for pe in ifactors(n)[2] do
e := op(2, pe) ;
p := op(1, pe) ;
a := a*(-1)^e*p^(2*floor(e/2)) ;
end do:
a ;
end proc:
seq(A358272(n), n=1..80) ; # R. J. Mathar, Jan 17 2023
MATHEMATICA
f[p_, e_] := (-1)^e * p^(2*Floor[e/2]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 07 2022 *)
PROG
(Python)
from math import prod
from sympy import factorint
def A358272(n): return prod(-p**(e&-2) if e&1 else p**(e&-2) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 17 2023
CROSSREFS
KEYWORD
sign,easy,mult
AUTHOR
Werner Schulte, Nov 07 2022
STATUS
approved

Search completed in 0.010 seconds