[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a068923 -id:a068923
     Sort: relevance | references | number | modified | created      Format: long | short | data
Table of t(r,s) read by antidiagonals: t(r,s) is the number of ways to tile an r X s room with 1 X 2 Tatami mats. At most 3 Tatami mats may meet at a point.
+10
13
0, 1, 1, 0, 2, 0, 1, 3, 3, 1, 0, 4, 0, 4, 0, 1, 6, 4, 4, 6, 1, 0, 9, 0, 2, 0, 9, 0, 1, 13, 6, 3, 3, 6, 13, 1, 0, 19, 0, 3, 0, 3, 0, 19, 0, 1, 28, 10, 3, 2, 2, 3, 10, 28, 1, 0, 41, 0, 5, 0, 2, 0, 5, 0, 41, 0, 1, 60, 16, 5, 2, 2, 2, 2, 5, 16, 60, 1, 0, 88, 0, 6, 0, 1, 0, 1, 0, 6, 0, 88, 0, 1, 129, 26
OFFSET
1,5
COMMENTS
Rows 2-6 are given in A068921 - A068925.
EXAMPLE
Table begins:
0, 1, 0, 1, 0, 1, ...
1, 2, 3, 4, 6, 9, ...
0, 3, 0, 4, 0, 6, ...
1, 4, 4, 2, 3, 3, ...
0, 6, 0, 3, 0, 2, ...
1, 9, 6, 3, 2, 2, ...
...
MATHEMATICA
(* See link for Mathematica programs. *)
c[r_, s_] := Which[s<0, 0, r==1, 1 - Mod[s, 2], r == 2, c1[2, s] + c2[2, s] + Boole[s == 0], OddQ[r], c[r, s] = c[r, s - r + 1] + c[r, s - r - 1] + Boole[s == 0], EvenQ[r], c[r, s] = c1[r, s] + c2[r, s] + Boole[s == 0]];
c1[r_, s_] := Which[s <= 0, 0, r == 2, c[2, s - 1], EvenQ[r], c2[r, s - 1] + Boole[s == 1]];
c2[r_, s_] := Which[s <= 0, 0, r == 2, c2[2, s] = c1[2, s - 2] + Boole[s == 2], EvenQ[r], c2[r, s] = c1[r, s - r + 2] + c1[r, s - r] + Boole[s == r - 2] + Boole[s == r]];
t[r_, s_] := Which[r>s, t[s, r], OddQ[r] && r>1, 2 c[r, s], True, c[r, s]];
A068920[n_] := Module[{x}, x = Floor[(Sqrt[8 n + 1] - 1)/2]; t[n + 1 - x (x + 1)/2, (x + 1) (x + 2)/2 - n]];
Table[A068920[n], {n, 0, 100}] (* Jean-François Alcover, May 12 2017, copied and adapted from Dean Hickerson's programs *)
CROSSREFS
Cf. A068926 for incongruent tilings, A067925 for count by area.
Cf. A068921 (row 2), A068922 (row 3), A068923 (row 4), A068924 (row 5), A068925 (row 6).
KEYWORD
nonn,tabl
AUTHOR
Dean Hickerson, Mar 11 2002
STATUS
approved
Triangle T(n,m) by rows: the number of tatami tilings of a 4 by n grid with 2*m monomers.
+10
3
1, 3, 1, 4, 18, 7, 4, 27, 13, 2, 32, 32, 3, 52, 64, 7, 3, 62, 133, 40, 3, 99, 269, 110, 9, 5, 152, 437, 280, 48, 5, 163, 730, 669, 138, 9, 6, 258, 1243, 1318, 433, 48, 8, 343, 1823, 2670, 1239, 154, 9, 8, 408, 2949, 5240, 2849, 600, 48, 11, 632, 4577
OFFSET
1,2
COMMENTS
The number of squares in the 4 by n floor is even, so the number of tilings with an odd number of monomers is zero.
FORMULA
G.f. x*( -1 -8*x^7*y^2 +21*x^5*y^2 -7*x^7*y^6 +4*x^3*y^2 -3*x^7 +2*x^5 -8*x^2*y^2 -4*x^8*y^4 -3*x -6*x*y^4 -15*x*y^2 -2*x^3*y^4 -6*x^8 -5*x^10*y^2 -5*x^9*y^2 -y^4 -2*x^8*y^2 -3*y^2 -8*x^11*y^2 +5*x^11*y^4 -3*x^2*y^4 -2*x^5*y^6 +2*x^13 +x^12 +x^11 +x^6 -7*x^7*y^4 +x^7*y^8 +11*x^4*y^2 -3*x^9 -15*x^10*y^4 -2*x^10*y^6 +18*x^9*y^4 +36*x^6*y^4 +20*x^6*y^2 -17*x^ 5*y^4 -8*x^4*y^4 +4*x^3 +8*x^6*y^6 +5*x^4 +2*x^9*y^6 -y^8*x^6 +6*y^6*x^3 +y^6*x^2)/ (x^11 -x^10 +2*x^9 -3*x^9*y^2 +x^8*y^2 -2*x^8 +x^7 +x^6*y^4 -5*x^6*y^2 -3*x^6 +2*x^5 +5*x^5*y^2 +x^4*y^2 -2*x^4 -x^3*y^2 +2*x^3 +x^2*y^2 +x -1). - R. J. Mathar, May 01 2016
EXAMPLE
The triangle starts in row n=1 and column m=0 as:
1,3,1;
4,18,7;
4,27,13;
2,32,32;
3,52,64,7;
3,62,133,40;
3,99,269,110,9;
5,152,437,280,48;
5,163,730,669,138,9;
6,258,1243,1318,433,48;
8,343,1823,2670,1239,154,9;
8,408,2949,5240,2849,600,48;
11,632,4577,9011,6655,1927,172,9;
13,746,6287,16184,14697,4930,777,48;
14,971,9928,28135,28805,13089,2669,190,9;
19,1394,14234,44806,58022,32176,7501,954,48;
21,1610,19501,75702,111795,70427,22344,3445,208,9;
25,2224,29785,121302,199354,157078,59859,10576,1131,48;
32,2909,40073,184597,366553,331449,143611,34646,4257,226,9;
35,3464,55939,298278,644436,651772,350855,99300,14167,1308,48;
44,4820,81474,449995,1081033,1303651,802565,258303,50095,5105,244,9;
53,5924,106460,670726,1868914,2488996,1719501,684338,151835,18274,1485,48;
60,7408,150672,1040424,3077401,4548409,3716945,1678785,425017,68761,5989,262,9;
76,9972,208211,1503372,4956628,8434302,7641320,3879356,1208052,218806,22897,1662,48;
CROSSREFS
Cf. A192090 (row sums), A068923 (column m=0), A272472 (3 by n grid), A100265 (without tatami condition, reversed rows).
KEYWORD
nonn,tabf
AUTHOR
R. J. Mathar, Apr 30 2016
STATUS
approved
Number of incongruent ways to tile a 4 X n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.
+10
2
1, 3, 2, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 11, 12, 14, 17, 20, 24, 29, 32, 41, 46, 56, 68, 78, 93, 114, 130, 161, 188, 223, 268, 318, 378, 456, 533, 646, 763, 911, 1092, 1296, 1542, 1855, 2190, 2634, 3133, 3732, 4463, 5323, 6339, 7596, 9022, 10802, 12876
OFFSET
1,2
LINKS
F. Ruskey and J. Woodcock, Counting Fixed-Height Tatami Tilings, Electronic Journal of Combinatorics, Paper R126 (2009) 20 pages.
FORMULA
For n >= 20, a(n) = a(n-3) + a(n-5) + a(n-6) - a(n-9) + a(n-10) - a(n-11) - a(n-13) - a(n-15).
G.f.: x*(1-x^18+x^17+x^16+x^15+x^13-x^12-2*x^11-2*x^8-4*x^7-3*x^6-x^5-x^4+2*x^2+3*x) / ((x^5+x^3-1) * (x^10+x^6-1)) [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009]
CROSSREFS
Cf. A068923 for total number of tilings, A068926 for more info.
KEYWORD
easy,nonn
AUTHOR
Dean Hickerson, Mar 11 2002
EXTENSIONS
G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.
STATUS
approved

Search completed in 0.005 seconds