[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a055110 -id:a055110
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers n such that Q(sqrt(-n)) has class number 4.
+10
6
14, 17, 21, 30, 33, 34, 39, 42, 46, 55, 57, 70, 73, 78, 82, 85, 93, 97, 102, 130, 133, 142, 155, 177, 190, 193, 195, 203, 219, 253, 259, 291, 323, 355, 435, 483, 555, 595, 627, 667, 715, 723, 763, 795, 955, 1003, 1027, 1227, 1243, 1387, 1411, 1435, 1507, 1555
OFFSET
1,1
COMMENTS
Contains 54 numbers [Arno, Theorem 7], ..., 1387, 1411, 1435, 1507 and 1555. [R. J. Mathar, May 01 2010]
LINKS
Steven Arno, The imaginary quadratic fields of class number 4, Acta Arithm. vol 60 issue 4 (1991).
Steven Arno, M. L. Robinson, Ferrell S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arith. 83 (1998) 295-330.
Eric Weisstein's World of Mathematics, Pythagorean Triple.
PROG
(PARI) \\ See A005847
CROSSREFS
See A003173, A005847, A006203, A046085, A046002, A055109, A046004, A055110, A046006, A055111 for class numbers 1 through 10.
KEYWORD
nonn,fini,full,changed
AUTHOR
N. J. A. Sloane, Jun 16 2000
STATUS
approved
Numbers k such that Q(sqrt(-k)) has class number 6.
+10
5
26, 29, 38, 53, 61, 87, 106, 109, 118, 157, 202, 214, 247, 262, 277, 298, 339, 358, 397, 411, 451, 515, 707, 771, 835, 843, 1059, 1099, 1147, 1203, 1219, 1267, 1315, 1347, 1363, 1563, 1603, 1843, 1915, 1963, 2227, 2283, 2443, 2515, 2563, 2787
OFFSET
1,1
MATHEMATICA
Select[Range[10000], MoebiusMu[#] != 0 && NumberFieldClassNumber[Sqrt[-#]] == 6 &] (* Jinyuan Wang, Mar 08 2020 *)
PROG
(PARI) \\ See A005847.
CROSSREFS
See A003173, A005847, A006203, A046085, A046002, A055109, A046004, A055110, A046006, A055111 for class numbers 1 through 10.
KEYWORD
nonn,fini,full
AUTHOR
N. J. A. Sloane, Jun 16 2000
STATUS
approved
Numbers k such that Q(sqrt(-k)) has class number 10.
+10
5
74, 86, 119, 122, 143, 159, 166, 181, 197, 218, 229, 303, 317, 319, 346, 373, 394, 415, 421, 422, 538, 541, 611, 613, 635, 694, 699, 709, 757, 779, 803, 851, 853, 877, 923, 982, 1093, 1115, 1213, 1318, 1643, 1707, 1779, 1819, 1835, 1891, 1923
OFFSET
1,1
MATHEMATICA
Select[Range[10000], MoebiusMu[#] != 0 && NumberFieldClassNumber[Sqrt[-#]] == 10 &] (* Jinyuan Wang, Mar 08 2020 *)
PROG
(PARI) \\ See A005847.
CROSSREFS
See A003173, A005847, A006203, A046085, A046002, A055109, A046004, A055110, A046006, A055111 for class numbers 1 through 10.
KEYWORD
nonn,fini,full
AUTHOR
N. J. A. Sloane, Jun 16 2000
STATUS
approved
Class number, k, of n; i.e., imaginary quadratic fields negated Q(sqrt(-n))=k, or 0 if n is not squarefree (A005117).
+10
0
1, 1, 1, 0, 2, 2, 1, 0, 0, 2, 1, 0, 2, 4, 2, 0, 4, 0, 1, 0, 4, 2, 3, 0, 0, 6, 0, 0, 6, 4, 3, 0, 4, 4, 2, 0, 2, 6, 4, 0, 8, 4, 1, 0, 0, 4, 5, 0, 0, 0, 2, 0, 6, 0, 4, 0, 4, 2, 3, 0, 6, 8, 0, 0, 8, 8, 1, 0, 8, 4, 7, 0, 4, 10, 0, 0, 8, 4, 5, 0, 0, 4, 3, 0, 4, 10, 6, 0, 12, 0, 2, 0, 4, 8, 8, 0, 4, 0, 0, 0, 14, 4, 5, 0, 8
OFFSET
1,5
MATHEMATICA
f[n_] := If[! SquareFreeQ@ n, 0, NumberFieldClassNumber@Sqrt@ -n]; Array[f, 105]
PROG
(PARI) a(n) = if (! issquarefree(n), 0, qfbclassno(-n*if((-n)%4>1, 4, 1))); \\ Michel Marcus, Jul 08 2015
CROSSREFS
a(n)= 0: A013929; a(n)= 1: A003173; a(n)= 2: A005847; a(n)= 3: A006203; a(n)= 4: A046085; a(n)= 5: A046002; a(n)= 6: A055109; a(n)= 7: A046004; a(n)= 8: A055110; a(n)= 9: A046006; a(n)=10: A055111; a(n)=11: A046008; a(n)=12: n/a;
a(n)=13: A046010; a(n)=14: n/a; a(n)=15: A046012; a(n)=16: n/a; a(n)=17: A046014; a(n)=18: n/a; a(n)=19: A046016;
a(n)=20: n/a; a(n)=21: A046018; a(n)=22: n/a;
a(n)=23: A046020; a(n)=24: n/a; a(n)=25: A056987; etc.
Cf. A000924 (without the zeros).
KEYWORD
easy,nonn,changed
AUTHOR
Robert G. Wilson v, Jun 01 2011
STATUS
approved

Search completed in 0.017 seconds