[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a049564 -id:a049564
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes p such that multiplicative order of 2 modulo p is odd.
+10
9
7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 263, 271, 311, 337, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 601, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919, 937, 967, 983, 991, 1031, 1039, 1063
OFFSET
1,1
COMMENTS
Or, primes p which do not divide 2^n+1 for any n.
The possibility n=0 in the above rules out A072936(1)=2; apart from this, a(n)=A072936(n+1). - M. F. Hasler, Dec 08 2007
The order of 2 mod p is odd iff 2^k=1 mod p, where p-1=2^s*k, k odd. - M. F. Hasler, Dec 08 2007
Has density 7/24 (Hasse).
REFERENCES
Christopher Adler and Jean-Paul Allouche (2022), Finite self-similar sequences, permutation cycles, and music composition, Journal of Mathematics and the Arts, 16:3, 244-261, DOI: 10.1080/17513472.2022.2116745.
P. Moree, Appendix to V. Pless et al., Cyclic Self-Dual Z_4 Codes, Finite Fields Applic., vol. 3 pp. 48-69, 1997.
LINKS
H. H. Hasse, Über die Dichte der Primzahlen p, ... , Math. Ann., 168 (1966), 19-23.
J. C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math., 118. No. 2, (1985), 449-461.
Chunlei Li, Nian Li, and Matthew G. Parker, Complementary Sequence Pairs of Types II and III. [From N. J. A. Sloane, Jun 16 2012]
MATHEMATICA
okQ[p_] := OddQ[MultiplicativeOrder[2, p]];
Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Nov 23 2024 *)
PROG
(PARI) isA014663(p)=1==Mod(1, p)<<((p-1)>>factor(p-1, 2)[1, 2])
listA014663(N=1000)=forprime(p=3, N, isA014663(p)&print1(p", ")) \\ M. F. Hasler, Dec 08 2007
(PARI) lista(nn) = {forprime(p=3, nn, if (znorder(Mod(2, p)) % 2, print1(p, ", ")); ); } \\ Michel Marcus, Feb 06 2015
CROSSREFS
Cf. Complement in primes of A091317.
Cf. Essentially the same as A072936 (except for missing leading term 2).
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 11 1999.
EXTENSIONS
Edited by M. F. Hasler, Dec 08 2007
More terms from Max Alekseyev, Feb 06 2010
STATUS
approved
Primes p that do not divide 2^x+1 for any x>=1.
+10
6
2, 7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 263, 271, 311, 337, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 601, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919, 937, 967, 983, 991, 1031, 1039, 1063
OFFSET
1,1
COMMENTS
Also, primes p such that p^2 does not divide 2^x+1 for any x>=1.
A prime p cannot divide 2^x+1 if the multiplicative order of 2 (mod p) is odd. - T. D. Noe, Aug 22 2004
Differs from A049564 first at p=6529, which is the 250th entry in A049564 related to 279^32 =2 mod 6529, but absent here because 6529 divides 2^51+1. [From R. J. Mathar, Sep 25 2008]
REFERENCES
A. K. Devaraj, "Euler's Generalization of Fermat's Theorem-A Further Generalization", in ISSN #1550-3747, Proceedings of Hawaii Intl Conference on Statistics, Mathematics & Related Fields, 2004.
CROSSREFS
Cf. A040098, A049096, A014664 (multiplicative order of 2 mod n-th prime).
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Aug 20 2002
EXTENSIONS
Edited by T. D. Noe, Aug 22 2004
STATUS
approved
Primes p such that x^32 = 2 has no solution mod p.
+10
5
3, 5, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 83, 97, 101, 107, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, 211, 227, 229, 241, 251, 257, 269, 277, 281, 283, 293, 307, 313, 317, 331, 347, 349, 353, 373, 379, 389, 397, 401, 409, 419
OFFSET
1,1
COMMENTS
Complement of A049564 relative to A000040.
Differs from A014662 first at p=6529, then at p=21569. [R. J. Mathar, Oct 05 2008]
Differs from A045316 (x^8 == 2 (mod p) has no solution) first at a(37) = 257 which is not a term of A045316. See A070184 for all such terms. - M. F. Hasler, Jun 21 2024
LINKS
MATHEMATICA
ok[p_] := Reduce[Mod[x^32 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[100]], ok ] (* Vincenzo Librandi, Sep 20 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(450) | not exists{x : x in ResidueClassRing(p) | x^32 eq 2 }]; // Vincenzo Librandi, Sep 20 2012
CROSSREFS
Cf. A070184 = (this sequence) \ A045316.
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jan 27 2001
STATUS
approved

Search completed in 0.004 seconds