[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a046063 -id:a046063
     Sort: relevance | references | number | modified | created      Format: long | short | data
Prime partition numbers.
+10
26
2, 3, 5, 7, 11, 101, 17977, 10619863, 6620830889, 80630964769, 228204732751, 1171432692373, 1398341745571, 10963707205259, 15285151248481, 10657331232548839, 790738119649411319, 18987964267331664557, 74878248419470886233, 1394313503224447816939
OFFSET
1,1
LINKS
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
G. K. Patil, Ramanujan's Life And His Contributions In The Field Of Mathematics, International Journal of Scientific Research and Engineering Studies (IJSRES), 1(6) (2014), ISSN: 2349-8862.
Eric Weisstein's World of Mathematics, Partition Function P Congruences.
Eric Weisstein's World of Mathematics, Partition Function P.
FORMULA
a(n) = A000041(A046063(n)) = A000040(A051143(n)). - M. F. Hasler, Oct 19 2008
A010051(a(n))*A167392(a(n)) = 1. - Reinhard Zumkeller, Nov 03 2009
MATHEMATICA
lst={}; Do[a=PartitionsP[n]; If[PrimeQ[a], AppendTo[lst, a]], {n, 2*6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 14 2009 *)
Select[PartitionsP[Range[1000]], PrimeQ] (* Harvey P. Dale, Mar 11 2013 *)
PROG
(PARI) for(n=0, 10^3, my(p=numbpart(n)); if(isprime(p), print1(p, ", "))); \\ Joerg Arndt, May 09 2013
CROSSREFS
Intersection of A000040 and A000041.
Cf. A038753, A065728. - Reinhard Zumkeller, Nov 03 2009
KEYWORD
nonn,nice,changed
EXTENSIONS
More terms from James A. Sellers and Christian G. Bower, Oct 15 1999.
STATUS
approved
Number of partitions-into-distinct-parts of n (A000009) is a prime.
+10
23
3, 4, 5, 7, 22, 70, 100, 495, 1247, 2072, 320397, 3335367, 16168775, 37472505, 52940251, 78840125, 81191852
OFFSET
1,1
COMMENTS
No other terms below 10^8. - Max Alekseyev, Jul 10 2015
LINKS
Eric Weisstein's World of Mathematics, Integer Sequence Primes
Eric Weisstein's World of Mathematics, Partition Function Q
Eric Weisstein's World of Mathematics, Partition Function Q-Congruences
EXAMPLE
From Gus Wiseman, Jan 13 2020: (Start)
Strict partitions of a(1) = 3 through a(4) = 7:
(3) (4) (5) (7)
(2,1) (3,1) (3,2) (4,3)
(4,1) (5,2)
(6,1)
(4,2,1)
(End)
MATHEMATICA
n = 1; A035359 = {}; While[n < 10^7, n++; If[ PrimeQ[ PartitionsQ[n]], Print[n]; AppendTo[A035359, n]]]; A035359 (* Jean-François Alcover, Oct 12 2011 *)
CROSSREFS
The non-strict version is A046063.
The version for powers of 2 instead of primes is A331022.
The version for factorizations instead of strict partitions is A330991.
The version for strict factorizations instead of strict partitions is A331201.
KEYWORD
nonn,nice,hard,more,changed
EXTENSIONS
More terms from Eric W. Weisstein
a(12) from Max Alekseyev, Jul 04 2009
a(13)-a(14) from Giovanni Resta, Jun 05 2015, Jun 11 2015
a(15)-a(17) from Max Alekseyev, Jul 10 2015
STATUS
approved
Positive integers whose number of factorizations into factors > 1 (A001055) is a prime number (A000040).
+10
17
4, 6, 8, 9, 10, 14, 15, 16, 21, 22, 24, 25, 26, 27, 30, 32, 33, 34, 35, 38, 39, 40, 42, 46, 49, 51, 54, 55, 56, 57, 58, 60, 62, 64, 65, 66, 69, 70, 74, 77, 78, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 102, 104, 105, 106, 110, 111, 114, 115, 118, 119
OFFSET
1,1
COMMENTS
In short, A001055(a(n)) belongs to A000040.
LINKS
R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
EXAMPLE
Factorizations of selected terms:
(4) (8) (16) (24) (60) (96)
(2*2) (2*4) (2*8) (3*8) (2*30) (2*48)
(2*2*2) (4*4) (4*6) (3*20) (3*32)
(2*2*4) (2*12) (4*15) (4*24)
(2*2*2*2) (2*2*6) (5*12) (6*16)
(2*3*4) (6*10) (8*12)
(2*2*2*3) (2*5*6) (2*6*8)
(3*4*5) (3*4*8)
(2*2*15) (4*4*6)
(2*3*10) (2*2*24)
(2*2*3*5) (2*3*16)
(2*4*12)
(2*2*3*8)
(2*2*4*6)
(2*3*4*4)
(2*2*2*12)
(2*2*2*2*6)
(2*2*2*3*4)
(2*2*2*2*2*3)
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Select[Range[100], PrimeQ[Length[facs[#]]]&]
CROSSREFS
Factorizations are A001055, with image A045782, with complement A330976.
Numbers whose number of strict integer partitions is prime are A035359.
Numbers whose number of integer partitions is prime are A046063.
Numbers whose number of set partitions is prime are A051130.
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with prime(n) factorizations is A330992(n).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 07 2020
STATUS
approved
Numbers with an odd number of partitions.
+10
15
0, 1, 3, 4, 5, 6, 7, 12, 13, 14, 16, 17, 18, 20, 23, 24, 29, 32, 33, 35, 36, 37, 38, 39, 41, 43, 44, 48, 49, 51, 52, 53, 54, 56, 60, 61, 63, 67, 68, 69, 71, 72, 73, 76, 77, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 95, 99, 102, 104, 105, 107, 111, 114, 115, 118, 119, 121
OFFSET
1,3
COMMENTS
A052003(n) = A000041(a(n+1)). - Reinhard Zumkeller, Nov 03 2015
Also, numbers having an odd number of partitions into distinct odd parts; that is, numbers m such that A000700(m) is odd. For example, 16 is in the list since 16 has 5 partitions into distinct odd parts, namely, 1 + 15, 3 + 13, 5 + 11, 7 + 9 and 1 + 3 + 5 + 7. See Formula section for a proof. - Peter Bala, Jan 22 2017
LINKS
O. Kolberg, Note on the parity of the partition function, Math. Scand. 7 1959 377-378. MR0117213 (22 #7995).
FORMULA
From Peter Bala, Jan 22 2016: (Start)
Sum_{n>=0} x^a(n) = (1 + x)*(1 + x^3)*(1 + x^5)*... taken modulo 2. Proof: Product_{n>=1} 1 + x^(2*n-1) = Product_{n>=1} (1 - x^(4*n-2))/(1 - x^(2*n-1)) = Product_{n>=1} (1 - x^(2*n))*(1 - x^(4*n-2))/( (1 - x^(2*n)) * (1 - x^(2*n-1)) ) = ( 1 + 2*Sum_{n>=1} (-1)^n*x^(2*n^2) )/(Product_{n>=1} (1 - x^n)) == 1/( Product_{n>=1} (1 - x^n) ) (mod 2). (End)
EXAMPLE
From Gus Wiseman, Jan 13 2020: (Start)
The partitions of the initial terms are:
(1) (3) (4) (5) (6) (7)
(21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (321) (331)
(11111) (411) (421)
(2211) (511)
(3111) (2221)
(21111) (3211)
(111111) (4111)
(22111)
(31111)
(211111)
(1111111)
(End)
MAPLE
N:= 1000: # to get all terms <= N
V:= Vector(N+1):
V[1]:= 1:
for i from 1 to (N+1)/2 do
V[2*i..N+1]:= V[2*i..N+1] + V[1..N-2*i+2] mod 2
od:
select(t -> V[t+1]=1, [$1..N]); # Robert Israel, Jan 22 2017
MATHEMATICA
f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]
Table[f[2, k], {k, 0, 1}] (* Clark Kimberling, Jan 05 2014 *)
PROG
(PARI) for(n=0, 200, if(numbpart(n)%2==1, print1(n", "))) \\ Altug Alkan, Nov 02 2015
(Haskell)
import Data.List (findIndices)
a052002 n = a052002_list !! (n-1)
a052002_list = findIndices odd a000041_list
-- Reinhard Zumkeller, Nov 03 2015
CROSSREFS
The strict version is A001318, with complement A090864.
The version for prime instead of odd numbers is A046063.
The version for squarefree instead of odd numbers is A038630.
The version for set partitions appears to be A032766.
The version for factorizations is A331050.
The version for strict factorizations is A331230.
KEYWORD
nonn,easy
AUTHOR
Patrick De Geest, Nov 15 1999
EXTENSIONS
Offset corrected and b-file adjusted by Reinhard Zumkeller, Nov 03 2015
STATUS
approved
Numbers n such that p(6n) is prime, where p(n) is the number of partitions of n.
+10
14
1, 6, 22, 28, 31, 36, 61, 83, 91, 181, 216, 263, 356, 417, 418, 428, 528, 557, 777, 1133, 1243, 1408, 2170, 2708, 3046, 3867, 5100, 5540, 5662, 7418, 9397, 12110, 12797, 14787, 16161, 16482, 18022, 19431, 19667, 21180, 22011, 22720, 23560, 27903
OFFSET
1,2
LINKS
EXAMPLE
If n=91 then p(6n) = 27833079238879849385687 (prime).
MATHEMATICA
Select[ Range[33333], PrimeQ[ PartitionsP[6# ]] &] (* Robert G. Wilson v *)
PROG
(PARI) is(n)=isprime(numbpart(6*n)) \\ Charles R Greathouse IV, Feb 17 2017
KEYWORD
nonn
AUTHOR
Parthasarathy Nambi, Nov 11 2005
EXTENSIONS
a(10)-a(45) from Robert G. Wilson v, Nov 14 2005
STATUS
approved
Numbers n such that P(4n) is prime, where P(m) is the number of partitions of m.
+10
14
1, 9, 33, 42, 47, 53, 54, 110, 324, 534, 627, 642, 683, 728, 792, 1114, 2112, 2228, 2323, 2770, 3007, 3255, 3368, 3760, 4062, 4569, 6139, 7650, 7939, 8138, 8310, 8493, 8674, 9122, 9407, 10345, 11127, 13343, 14713, 15442, 15632, 16358, 16904, 18165, 19303
OFFSET
1,2
LINKS
EXAMPLE
If n=110 then P(4*n) = 74878248419470886233 (prime).
MATHEMATICA
Select[ Range[19923], PrimeQ[ PartitionsP[4# ]] &] (* Robert G. Wilson v *)
PROG
(PARI) is(n)=isprime(numbpart(4*n)) \\ Charles R Greathouse IV, Feb 17 2017
KEYWORD
nonn
AUTHOR
Parthasarathy Nambi, Nov 11 2005
EXTENSIONS
a(9)-a(37) from Robert G. Wilson v, Nov 14 2005
STATUS
approved
Numbers n such that p(3n) is prime, where p(n) is the number of partitions of n.
+10
14
1, 2, 12, 44, 56, 62, 72, 122, 139, 166, 175, 182, 245, 251, 275, 362, 432, 526, 712, 831, 834, 836, 856, 909, 957, 1009, 1056, 1114, 1554, 2266, 2486, 2816, 3967, 4340, 5416, 6092, 6837, 6959, 7215, 7255, 7439, 7734, 9655, 10200, 11080, 11324, 11361, 12819
OFFSET
1,2
LINKS
FORMULA
Elements of A046063 which are == 0 (mod 3) divided by 3
EXAMPLE
If n=72 then p(3n) = 15285151248481 (prime).
MATHEMATICA
Select[ Range[13370], PrimeQ[ PartitionsP[3# ]] &] (* Robert G. Wilson v *)
PROG
(PARI) is(n)=isprime(numbpart(3*n)) \\ Charles R Greathouse IV, Feb 17 2017
KEYWORD
nonn
AUTHOR
Parthasarathy Nambi, Nov 09 2005
EXTENSIONS
a(8)-a(48) from Robert G. Wilson v, Nov 11 2005
STATUS
approved
Numbers n such that p(2n) is prime, where p(n) is the number of partitions of n.
+10
13
1, 2, 3, 18, 66, 84, 93, 94, 106, 108, 151, 183, 220, 249, 273, 329, 543, 648, 789, 793, 1068, 1251, 1254, 1284, 1366, 1456, 1549, 1584, 1671, 1771, 2059, 2131, 2228, 2331, 2501, 3399, 3729, 4224, 4456, 4646, 4999, 5093, 5540, 6014, 6510, 6736, 7520, 8124
OFFSET
1,2
COMMENTS
2n-th partition number (A000041(2n)) is prime.
LINKS
MATHEMATICA
Select[ Range[9137], PrimeQ[ PartitionsP[2# ]] &]
PROG
(PARI) is(n)=isprime(numbpart(2*n)) \\ Charles R Greathouse IV, Feb 17 2017
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Nov 14 2005
STATUS
approved
Numbers n such that p(5n) is prime, where p(n) is the number of partitions of n.
+10
13
1, 88, 105, 147, 165, 217, 1481, 2216, 2579, 2604, 3008, 3658, 3694, 4329, 4353, 4447, 4534, 5074, 5793, 6120, 6578, 6648, 7861, 7994, 8276, 8851, 9421, 10371, 12350, 12359, 12389, 13010, 13345, 13479, 14532, 14727, 16461, 19313, 19466, 20354
OFFSET
1,2
LINKS
MATHEMATICA
Select[ Range[20780], PrimeQ[PartitionsP[5# ]] &]
PROG
(PARI) is(n)=isprime(numbpart(5*n)) \\ Charles R Greathouse IV, Feb 17 2017
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Nov 14 2005
STATUS
approved
Numbers n such that p(7n) is prime, where p(n) is the number of partitions of n.
+10
13
11, 24, 75, 78, 94, 105, 155, 211, 293, 416, 506, 666, 1860, 3013, 3508, 3811, 4869, 5615, 5710, 8824, 8841, 8998, 10380, 11014, 11779, 13795, 14276, 15285, 18014, 19456, 19855, 22435, 23343, 23391, 26328, 30608, 31380, 32074, 32810, 33459
OFFSET
1,1
LINKS
MATHEMATICA
Select[ Range[28571], PrimeQ[PartitionsP[7# ]] &]
PROG
(PARI) is(n)=isprime(numbpart(7*n)) \\ Charles R Greathouse IV, Feb 17 2017
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Nov 14 2005
STATUS
approved

Search completed in 0.022 seconds