[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a046015 -id:a046015
     Sort: relevance | references | number | modified | created      Format: long | short | data
Discriminants of imaginary quadratic fields with class number 25 (negated).
+10
20
479, 599, 1367, 2887, 3851, 4787, 5023, 5503, 5843, 7187, 7283, 7307, 7411, 8011, 8179, 9227, 9923, 10099, 11059, 11131, 11243, 11867, 12211, 12379, 12451, 12979, 14011, 14923, 15619, 17483, 18211, 19267, 19699, 19891, 20347, 21107, 21323
OFFSET
1,1
COMMENTS
Sequence contains 95 members; largest is 93307.
The class group of Q[sqrt(-d)] is isomorphic to C_5 X C_5 for d = 12451 and 37363. For all other d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_25. - Jianing Song, Dec 01 2019
LINKS
Eric Weisstein's World of Mathematics, Class Number.
MATHEMATICA
Reap[ For[n = 1, n < 22000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 25, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
KEYWORD
nonn,fini,full,changed
STATUS
approved
Class number, k, of n, i.e.; imaginary quadratic fields negated Q(sqrt(-n))=k, or 0 if n is not a fundamental discriminant (A003657).
+10
14
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 4, 2, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 4, 4, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 3, 4, 0, 0, 6, 2, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 5, 6, 0
OFFSET
1,15
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Steven Arno, M. L. Robinson and Ferrel S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arithm. 83.4 (1998), 295-330
Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
C. Wagner, Class Number 5, 6 and 7, Math. Comput. 65, 785-800, 1996.
Eric Weisstein's World of Mathematics, Class Number
MATHEMATICA
FundamentalDiscriminantQ[n_] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *);
f[n_] := If[ !FundamentalDiscriminantQ@ -n, 0, NumberFieldClassNumber@ Sqrt@ -n]; Array[f, 105]
PROG
(PARI) a(n)=if(isfundamental(-n), qfbclassno(-n), 0) \\ Charles R Greathouse IV, Nov 20 2012
CROSSREFS
a(n)= 0: n/a The complement of A003657; a(n)= 1: A014602; a(n)= 2: A014603; a(n)= 3: A006203; a(n)= 4: A013658; a(n)= 5: A046002; a(n)= 6: A046003; a(n)= 7: A046004; a(n)= 8: A046005; a(n)= 9: A046006; a(n)=10: A046007; a(n)=11: A046008; a(n)=12: A046009; a(n)=13: A046010; a(n)=14: A046011; a(n)=15: A046012; a(n)=16: A046013; a(n)=17: A046014; a(n)=18: A046015; a(n)=19: A046016; a(n)=20: A123563; a(n)=21: A046018; a(n)=22: A171724; a(n)=23: A046020; a(n)=24: A048925; a(n)=25: A056987; etc.
KEYWORD
easy,nonn,changed
AUTHOR
Robert G. Wilson v, Jun 01 2011
STATUS
approved

Search completed in 0.004 seconds