[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a033502 -id:a033502
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers n such that 6n+1, 12n+1 and 18n+1 are all primes.
+10
17
1, 6, 35, 45, 51, 55, 56, 100, 121, 195, 206, 216, 255, 276, 370, 380, 426, 506, 510, 511, 710, 741, 800, 825, 871, 930, 975, 1025, 1060, 1115, 1140, 1161, 1270, 1280, 1281, 1311, 1336, 1361, 1365, 1381, 1420, 1421, 1441, 1490, 1515, 1696, 1805, 1875, 1885
OFFSET
1,2
COMMENTS
Main entry for this sequence is A033502.
n is a Carmichael number generator giving C(n) = (6n+1)(12n+1)(18n+1).
REFERENCES
Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, Wiley NY 1991, page 83, problem #20.
R. K. Guy, Unsolved Problems in Number Theory, A13.
MATHEMATICA
Select[Range[2000], And@@PrimeQ[{6, 12, 18}#+1]&] (* Harvey P. Dale, May 26 2014 *)
PROG
(PARI) is(n)=isprime(6*n+1) && isprime(12*n+1) && isprime(18*n+1) \\ Charles R Greathouse IV, Jan 04 2022
CROSSREFS
KEYWORD
nonn,changed
EXTENSIONS
Better description from Robert G. Wilson v, Sep 27 2000
STATUS
approved
Numbers m > 1 such that there exists a divisor g > 1 of m which satisfies s_g(m) = g.
+10
8
6, 10, 12, 15, 18, 20, 21, 24, 28, 33, 34, 36, 39, 40, 45, 48, 52, 57, 63, 65, 66, 68, 72, 76, 80, 85, 87, 88, 91, 93, 96, 99, 100, 105, 111, 112, 117, 120, 126, 130, 132, 133, 135, 136, 144, 145, 148, 153, 156, 160, 165, 171, 175, 176, 185, 186, 189, 190
OFFSET
1,1
COMMENTS
The function s_g(m) gives the sum of the base-g digits of m.
The sequence is infinite, since it contains A324460.
The sequence also contains the 3-Carmichael numbers A087788 and the primary Carmichael numbers A324316.
A term m must have at least 2 prime factors, and the divisor g satisfies the inequalities 1 < g < m^(1/(ord_g(m)+1)) <= sqrt(m), where ord_g(m) gives the maximum exponent e such that g^e divides m.
Note that the sequence contains the 3-Carmichael numbers, but not all Carmichael numbers. This is a nontrivial fact.
The subsequence A324460 mainly gives examples in which g is composite.
See Kellner 2019.
It appears that g is usually prime: compare with A324857 (g prime) and the sparser sequence A324858 (g composite). However, g is usually composite for higher values of m. - Jonathan Sondow, Mar 17 2019
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..806 from Bernd C. Kellner)
Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), Article #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), Article #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
EXAMPLE
6 is a member, since 2 divides 6 and s_2(6) = 2.
MATHEMATICA
s[n_, g_] := If[n < 1 || g < 2, 0, Plus @@ IntegerDigits[n, g]];
f[n_] := AnyTrue[Divisors[n], s[n, #] == # &];
Select[Range[5000], f[#] &]
PROG
(PARI) isok(n) = {fordiv(n, d, if ((d>1) && (sumdigits(n, d) == d), return (1)); ); } \\ Michel Marcus, Mar 19 2019
CROSSREFS
Subsequences are A033502, A087788, A324316, A324458, A324460.
Subsequence of A324455.
Union of A324857 and A324858.
KEYWORD
nonn,base
AUTHOR
Bernd C. Kellner, Feb 28 2019
STATUS
approved
Prime numbers n such that 2n-1 and 3n-2 are prime.
+10
5
3, 7, 37, 211, 271, 307, 331, 337, 601, 727, 1171, 1237, 1297, 1531, 1657, 2221, 2281, 2557, 3037, 3061, 3067, 4261, 4447, 4801, 4951, 5227, 5581, 5851, 6151, 6361, 6691, 6841, 6967, 7621, 7681, 7687, 7867, 8017, 8167, 8191, 8287, 8521, 8527, 8647, 8941
OFFSET
1,1
COMMENTS
If n, 2n-1 and 3n-2 are prime numbers, and if n >= 5, then n*(2*n-1)*(3*n-2) is a Carmichael number (A033502).
Proof: there exist numbers m such that n=6m+1 is prime (if n=6m+5, then 2n-1 = 12m+9 is composite). Let p=(6m+1)(12m+1)(18m+1) = a*b*c. Then p-1 = 6*12*18*m^3 + (6*12 + 6*18 + 12*18)*m^2 + (6 + 12 + 19)*m, so p-1 is divisible by a-1=6m, by b-1=12m, and by c-1=18m; thus p is a Carmichael number.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, A13.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
W. R. Alford, Andrew Granville, and Carl Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 139 (1994), no. 3, 703-722.
Richard Pinch, Carmichael numbers up to 10^18, April 2006.
Richard Pinch, Carmichael numbers up to 10^18, arXiv:math/0604376 [math.NT], 2006.
EXAMPLE
For n=3, 2n-1 = 5, 3n-2 = 7.
For n=7, 2n-1 = 13, 3n-2 = 19 and 7*13*19 = 1729 (a Carmichael number).
For n=37, 2n-1 = 73, 3n-2 = 109 and 37*73*109 = 294409 (a Carmichael number).
MAPLE
with(numtheory): for n from 2 to 15000 do: if type(n, prime)=true and type(2*n-1, prime)=true and type(3*n-2, prime)=true then print (n):else fi:od:
MATHEMATICA
Select[Prime[Range[1000]], PrimeQ[2*#-1] && PrimeQ[3*#-2]&] (* Vladimir Joseph Stephan Orlovsky, Jan 13 2011 *)
PROG
(Magma) [ n: n in PrimesUpTo(10000) | IsPrime(2*n-1) and IsPrime(3*n-2) ];
(PARI) forprime(p=3, 10^3, isprime(2*p-1) && isprime(3*p-2) && print1(p, ", ")); \\ Joerg Arndt, Nov 29 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 28 2010
EXTENSIONS
Typo in term corrected by D. S. McNeil, Nov 20 2010
STATUS
approved
Number of 3-component Carmichael numbers C = (6M + 1)(12M + 1)(18M + 1) < 10^n.
+10
4
0, 1, 1, 2, 2, 3, 7, 10, 16, 25, 50, 86, 150, 256, 436, 783, 1435, 2631, 4765, 8766, 16320, 30601, 57719, 109504, 208822, 400643, 771735, 1494772, 2903761, 5658670, 11059937, 21696205, 42670184, 84144873, 66369603, 329733896, 655014986, 1303918824, 2601139051
OFFSET
3,4
COMMENTS
Note that this is different from the count of 3-Carmichael numbers, A132195. The numbers counted here are neither those listed in A087788 (3 arbitrary prime factors) nor those listed in A033502 (where 6m + 1, 12m + 1 and 18m + 1 are all prime). - M. F. Hasler, Apr 14 2015
REFERENCES
Posting by Harvey Dubner (harvey(AT)dubner.com) to Number Theory List (NMBRTHRY(AT)LISTSERV.NODAK.EDU), Nov 23 1998.
LINKS
H. Dubner, 3-Component Carmichael Numbers-correction, Post to Number Theory List, Nov 23 1998.
Harvey Dubner, Carmichael Numbers of the form (6m+1)(12m+1)(18m+1), Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.1.
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Terms updated (from Dubner's paper) by Amiram Eldar, Aug 11 2017
STATUS
approved
The least Chernick's "universal form" Carmichael number with n prime factors.
+10
4
1729, 63973, 26641259752490421121, 1457836374916028334162241, 24541683183872873851606952966798288052977151461406721, 53487697914261966820654105730041031613370337776541835775672321, 58571442634534443082821160508299574798027946748324125518533225605795841
OFFSET
3,1
COMMENTS
Chernick proved that U(k, m) = (6m + 1)*(12m + 1)*Product_{i = 1..k-2} (9*(2^i)m + 1), for k >= 3 and m >= 1 is a Carmichael number, if all the factors are primes and, for k >= 4, 2^(k-4) divides m. He called U(k, m) "universal forms". This sequence gives a(k) = U(k, m) with the least value of m. The least values of m for k = 3, 4, ... are 1, 1, 380, 380, 780320, 950560, 950560, 3208386195840, 31023586121600, ...
LINKS
Jack Chernick, On Fermat's simple theorem, Bulletin of the American Mathematical Society, Vol. 45, No. 4 (1939), pp. 269-274.
Daniel Suteu, C++ program
Samuel S. Wagstaff, Jr., Large Carmichael numbers, Mathematical Journal of Okayama University, Vol. 22, (1980), pp. 33-41.
EXAMPLE
For k=3, m = 1, a(3) = U(3, 1) = (6*1 + 1)*(12*1 + 1)*(18*1 + 1) = 1729.
For k=4, m = 1, a(4) = U(4, 1) = (6*1 + 1)*(12*1 + 1)*(18*1 + 1)*(36*1 + 1) = 63973.
For k=5, m = 380, a(5) = U(5, 1) = (6*380 + 1)*(12*380 + 1)*(18*380 + 1)*(36*380 + 1)*(72*380 + 1) = 26641259752490421121.
MATHEMATICA
fc[k_] := If[k < 4, 1, 2^(k - 4)]; a={}; Do[v = Join[{6, 12}, 2^Range[k-2]*9];
w = fc[k]; x = v*w; m = 1; While[! AllTrue[x*m + 1, PrimeQ], m++]; c=Times @@ (x*m + 1); AppendTo[a, c], {k, 3, 9}]; a
CROSSREFS
Cf. A002997, A033502 (3 prime factors), A206024 (4 prime factors), A206349 (5 prime factors), A126797.
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 31 2018
STATUS
approved
Carmichael numbers of the form (6*k + 1)*(12*k + 1)*(18*k + 1), where only two of the three numbers 6*k + 1, 12*k + 1, 18*k + 1 are prime.
+10
3
172081, 1773289, 4463641, 47006785, 295643089, 798770161, 1150270849, 1420379065, 1976295241, 18390744505, 122160500281, 134642101321, 215741809801, 228944441089, 263610459505, 321140603665, 374464040689, 444722065201, 676328168881, 1009514855521
OFFSET
1,1
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..2665 (terms < 4*10^30)
Carlos Rivera, Puzzle 739
Eric Weisstein's World of Mathematics, Carmichael Number
PROG
(Magma) lst:=[]; for k in [1..920] do t:={n: n in [1..3] | IsPrime(6*k*n+1)}; if #Set(t) eq 2 then c:=&*[6*k*n+1: n in [1..3]]; if IsOne(c mod CarmichaelLambda(c)) then lst:=Append(lst, c); end if; end if; end for; lst;
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
STATUS
approved
Carmichael numbers of the form (6*k + 1)*(12*k + 1)*(18*k + 1), where only one of the three numbers 6*k + 1, 12*k + 1, 18*k + 1 is prime.
+10
3
13992265, 1504651681, 14782305601, 292869912385, 2387706608354185, 4484354372982001, 70895950685971489, 807481759780458361, 1659264916949696161, 118023300545190612481, 140695625117781970705, 11710597360056333492601, 19818019625768288167321
OFFSET
1,1
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..26 (terms < 4*10^33)
Carlos Rivera, Puzzle 739
Eric Weisstein's World of Mathematics, Carmichael Number
PROG
(Magma) lst:=[]; for k in [1..2482095] do t:={n: n in [1..3] | IsPrime(6*k*n+1)}; if #Set(t) eq 1 then c:=&*[6*k*n+1: n in [1..3]]; if IsOne(c mod CarmichaelLambda(c)) then lst:=Append(lst, c); end if; end if; end for; lst;
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
STATUS
approved
Carmichael numbers of the form C = (30n-p)*(60n-(2p+1))*(90n-(3p+2)), where n is a natural number and p, 2p+1, 3p+2 are all three prime numbers.
+10
2
1729, 172081, 294409, 1773289, 4463641, 56052361, 118901521, 172947529, 216821881, 228842209, 295643089, 798770161, 1150270849, 1299963601, 1504651681, 1976295241, 2301745249, 9624742921, 11346205609, 13079177569
OFFSET
1,1
COMMENTS
These numbers can be reduced to only two possible forms: C =(30n-23)*(60n-47)*(90n-71) or C = (30n-29)*(60n-59)*(90n-89). In the first form, for the particular case when 30n-23,60n-47 and 90n-71 are all three prime numbers, we obtain the Chernick numbers of the form 10m+1 (for k = 5n-4 we have C = (6k+1)*(12k+1)*(18k+1)). In the second form, for the particular case when 30n-29,60n-59 and 90n-89 are all three prime numbers, we obtain the Chernick numbers of the form 10m+9 (for k = 5n-5 we have C = (6k+1)*(12k+1)*(18k+1)).
So the Chernick numbers can be divided into two categories: Chernick numbers of the form (30n+7)*(60n+13)*(90n+19) and Chernick numbers of the form (30n+1)*(60n+1)*(90n+1).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Carmichael Number.
PROG
(PARI) list(lim)={
my(v=List(), f);
for(k=1, round(solve(x=(lim/162000)^(1/3), lim^(1/3), (30*x-23)*(60*x-47)*(90*x-71)-lim)),
n=(30*k-23)*(60*k-47)*(90*k-71)-1;
f=factor(30*k-23);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
f=factor(60*k-47);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
f=factor(90*k-71);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
listput(v, n+1)
);
for(k=2, round(solve(x=(lim/162000)^(1/3), lim^(1/3), (30*x-29)*(60*x-59)*(90*x-89)-lim)),
n=(30*k-29)*(60*k-59)*(90*k-89)-1;
f=factor(30*k-29);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
f=factor(60*k-59);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
f=factor(90*k-89);
for(i=1, #f[, 1], if(f[i, 2]>1 || n%(f[i, 1]-1), next(2)));
listput(v, n+1)
);
vecsort(Vec(v))
}; \\ Charles R Greathouse IV, Oct 02 2012
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Marius Coman, Apr 11 2012
STATUS
approved
Carmichael numbers of the form (6*k+1)*(12*k+1)*(18*k+1) which are the product of four prime numbers.
+10
2
172081, 1773289, 4463641, 295643089, 798770161, 1976295241, 122160500281, 374464040689, 444722065201, 676328168881, 1009514855521, 2382986541601, 3022286597929, 9031805532361, 33648448111489, 155773422536761, 206932492972801, 366715617643441, 708083570971801
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..500 (terms 1..87 from Vincenzo Librandi)
Umberto Cerruti, Pseudoprimi di Fermat e numeri di Carmichael (in Italian), 2013. The sequence is on page 11.
MAPLE
with(numtheory); P:=proc(q)local a, b, k, ok, n;
for n from 0 to q do a:=(6*n+1)*(12*n+1)*(18*n+1); b:=ifactors(a)[2];
if issqrfree(a) and nops(b)=4 then ok:=1;
for k from 1 to 4 do if not type((a-1)/(b[k][1]-1), integer) then ok:=0;
break; fi; od; if ok=1 then print(a); fi;
fi; od; end: P(10^6); # Paolo P. Lava, Oct 11 2013
MATHEMATICA
g[n_] := (6*n+1)*(12*n+1)*(18*n+1); testQ[n_] := Block[{p, e}, {p, e} = Transpose@ FactorInteger@ n; e == {1, 1, 1, 1} && Max[Mod[n-1, p-1]] == 0]; Select[g /@ Range[10^4], testQ] (* Giovanni Resta, May 21 2013 *)
PROG
(Magma) [c: n in [1..10^4] | #PrimeDivisors(c) eq 4 and IsOne(c mod CarmichaelLambda(c)) where c is (6*n+1)*(12*n+1)*(18*n+1)];
CROSSREFS
Cf. A002997, A033502, A221743 (associated k).
Subsequence of A182087.
KEYWORD
nonn
AUTHOR
Bruno Berselli, Jan 23 2013, based on the Cerruti paper.
STATUS
approved
Numbers k such that (6*k+1)*(12*k+1)*(18*k+1) is a Carmichael number which is the product of four prime numbers.
+10
2
5, 11, 15, 61, 85, 115, 455, 661, 700, 805, 920, 1225, 1326, 1910, 2961, 4935, 5425, 6565, 8175, 10885, 11375, 12155, 13230, 18315, 37800, 39325, 45325, 59726, 69440, 99645, 113120, 121365, 129850, 144685, 211945, 353465, 378940, 389896, 392625
OFFSET
1,1
LINKS
MAPLE
with(numtheory); P:=proc(q)local a, b, k, ok, n;
for n from 0 to q do a:=(6*n+1)*(12*n+1)*(18*n+1); b:=ifactors(a)[2];
if issqrfree(a) and nops(b)=4 then ok:=1;
for k from 1 to 4 do if not type((a-1)/(b[k][1]-1), integer) then ok:=0;
break; fi; od; if ok=1 then print(n); fi;
fi; od; end: P(10^6); # Paolo P. Lava, Oct 11 2013
MATHEMATICA
IsCarmichaelQ[n_] := Module[{f}, If[EvenQ[n] || PrimeQ[n], False, f = Transpose[FactorInteger[n]][[1]]; Union[Mod[n-1, f-1]] == {0}]]; n = 0; t = {}; While[Length[t] < 39, n++; c = (6*n + 1)*(12*n + 1)*(18*n + 1); If[SquareFreeQ[c] && Length[FactorInteger[c]] == 4 && IsCarmichaelQ[c], AppendTo[t, n]]]; t (* T. D. Noe, Jan 23 2013 *)
PROG
(Magma) [n: n in [1..4*10^5] | #PrimeDivisors(c) eq 4 and IsOne(c mod CarmichaelLambda(c)) where c is (6*n+1)*(12*n+1)*(18*n+1)];
CROSSREFS
Cf. A002997, A033502, A221742 (associated Carmichael numbers).
Subsequence of A101187.
KEYWORD
nonn
AUTHOR
Bruno Berselli, Jan 23 2013, based on the Cerruti paper.
STATUS
approved

Search completed in 0.014 seconds