[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a032454 -id:a032454
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that 155*2^k + 1 is a semiprime.
+10
0
3, 4, 6, 9, 13, 16, 18, 21, 43, 47, 63, 70, 77, 83, 87, 97, 109, 117, 119, 126, 127, 133, 143, 149, 169, 171, 251, 277, 281, 283, 287, 313, 329, 351, 393, 429, 450, 460, 577, 587, 593, 610, 616, 679, 689
OFFSET
1,1
COMMENTS
a(35) > 392. - Robert Price, Jul 21 2017
EXAMPLE
3 is a term because 155*2^3 + 1 = 1241 = 17*73.
MATHEMATICA
Select[Range[200], PrimeOmega[155 2^# + 1] == 2 &]
PROG
(Magma) [n: n in [2..200] | &+[d[2]: d in Factorization(155*2^n+1)] eq 2];
CROSSREFS
Cf. A032454.
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Jun 25 2017
EXTENSIONS
a(27)-a(34) from Robert Price, Jul 21 2017
a(35)-a(45) from Tyler Busby, Feb 17 2023
STATUS
approved

Search completed in 0.003 seconds