[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a030628 -id:a030628
     Sort: relevance | references | number | modified | created      Format: long | short | data
Product of divisors of n.
+10
235
1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47, 254803968, 343
OFFSET
1,2
COMMENTS
All terms of this sequence occur only once. See the second T. D. Noe link for a proof. - T. D. Noe, Jul 07 2008
Every natural number has a unique representation in terms of divisor products. See the W. Lang link. - Wolfdieter Lang, Feb 08 2011
a(n) = n only if n is prime or 1 (or, if n is in A008578). - Alonso del Arte, Apr 18 2011
Sometimes called the "divisorial" of n. - Daniel Forgues, Aug 03 2012
a(n) divides EulerPhi(x^n-y^n) (see A. Rotkiewicz link). - Michel Marcus, Dec 15 2012
The proof that all the terms of this sequence occur only once (mentioned above) was given by Niven in 1984. - Amiram Eldar, Aug 16 2020
REFERENCES
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 57.
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 83.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
M. Le, On Smarandache Divisor Products, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, 144-145.
F. Luca, On the product of divisors of n and sigma(n), J. Ineq. Pure Appl. Math. 4 (2) 2003, Article 46.
A. Rotkiewicz, On the numbers Phi(a^n +/- b^n), Proc. Amer. Math. Soc. 12 (1961), 419-421.
Rodica Simon and Frank W. Schmid, Problem E 2946, The American Mathematical Monthly, Vol. 89, No. 5 (1982), p. 333, Ivan Niven, Product  of all Positive Divisors of n, solution to problem E 2946, ibid., Vol. 91, No. 10 (1984), p. 650.
Eric Weisstein's World of Mathematics, Divisor Product.
Zhu Weiyi, On the divisor product sequences, Smarandache Notions J., Vol. 14 (2004), pp. 144-146.
OEIS Wiki, Divisorial.
FORMULA
a(n) = n^(d(n)/2) = n^(A000005(n)/2). Since a(n) = Product_(d|n) d = Product_(d|n) n/d, we have a(n)*a(n) = Product_(d|n) d*(n/d) = Product_(d|n) n = n^(tau(n)), whence a(n) = n^(tau(n)/2).
a(p^k) = p^A000217(k). - Enrique Pérez Herrero, Jul 22 2011
a(n) = A078599(n) * A178649(n). - Reinhard Zumkeller, Feb 06 2012
a(n) = A240694(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
From Antti Karttunen, Mar 22 2017: (Start)
a(n) = A000196(n^A000005(n)). [From the original formula.]
A001222(a(n)) = A069264(n). [See Geoffrey Critzer's Feb 03 2015 comment in the latter sequence.]
A046523(a(n)) = A283995(n).
(End)
a(n) = Product_{k=1..n} gcd(n,k)^(1/phi(n/gcd(n,k))) = Product_{k=1..n} (n/gcd(n,k))^(1/phi(n/gcd(n,k))) where phi = A000010. - Richard L. Ollerton, Nov 07 2021
From Bernard Schott, Jan 11 2022: (Start)
a(n) = n^2 iff n is in A007422.
a(n) = n^3 iff n is in A162947.
a(n) = n^4 iff n is in A111398.
a(n) = n^5 iff n is in A030628.
a(n) = n^(3/2) iff n is in A280076. (End)
From Amiram Eldar, Oct 29 2022: (Start)
a(n) = n * A007956(n).
Sum_{k=1..n} 1/a(k) ~ log(log(n)) + c + O(1/log(n)), where c is a constant (Weiyi, 2004; Sandor and Crstici, 2004). (End)
a(n) = Product_{k=1..n} (n * (1 - ceiling(n/k - floor(n/k))))/k + ceiling(n/k - floor(n/k)). - Adriano Steffler, Feb 08 2024
EXAMPLE
Divisors of 10 = [1, 2, 5, 10]. So, a(10) = 2*5*10 = 100. - Indranil Ghosh, Mar 22 2017
MAPLE
A007955 := proc(n) mul(d, d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Mar 17 2011
seq(isqrt(n^numtheory[tau](n)), n=1..50); # Gary Detlefs, Feb 15 2019
MATHEMATICA
Array [ Times @@ Divisors[ # ]&, 100 ]
a[n_] := n^(DivisorSigma[0, n]/2); Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 21 2013 *)
PROG
(Magma) f := function(n); t1 := &*[d : d in Divisors(n) ]; return t1; end function;
(PARI) a(n)=if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)) \\ Charles R Greathouse IV, Feb 11 2011
(Haskell)
a007955 = product . a027750_row -- Reinhard Zumkeller, Feb 06 2012
(Sage) [prod(divisors(n)) for n in (1..100)] # Giuseppe Coppoletta, Dec 16 2014
(Scheme)
;; A naive stand-alone implementation:
(define (A007955 n) (let loop ((d n) (m 1)) (cond ((zero? d) m) ((zero? (modulo n d)) (loop (- d 1) (* m d))) (else (loop (- d 1) m)))))
;; Faster, if A000005 and A000196 are available:
(define (A007955 n) (A000196 (expt n (A000005 n))))
;; Antti Karttunen, Mar 22 2017
(Python)
from sympy import prod, divisors
print([prod(divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Mar 22 2017
(Python)
from math import isqrt
from sympy import divisor_count
def A007955(n):
d = divisor_count(n)
return isqrt(n)**d if d % 2 else n**(d//2) # Chai Wah Wu, Jan 05 2022
(GAP) List(List([1..50], n->DivisorsInt(n)), Product); # Muniru A Asiru, Feb 17 2019
CROSSREFS
Cf. A000203 (sums of divisors).
Cf. A000010 (comments on product formulas).
KEYWORD
nonn,nice,changed
AUTHOR
R. Muller
STATUS
approved
Numbers with 4 divisors.
+10
40
6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
OFFSET
1,1
COMMENTS
Essentially the same as A007422.
Numbers which are either the product of two distinct primes (A006881) or the cube of a prime (A030078).
4*a(n) are the solutions to A048272(x) = Sum_{d|x} (-1)^d = 4. - Benoit Cloitre, Apr 14 2002
Since A119479(4)=3, there are never more than 3 consecutive integers in the sequence. Triples of consecutive integers start at 33, 85, 93, 141, 201, ... (A039833). No such triple contains a term of the form p^3. - Ivan Neretin, Feb 08 2016
Numbers that are equal to the product of their proper divisors (A007956) (proof in Sierpiński). - Bernard Schott, Apr 04 2022
REFERENCES
Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.
FORMULA
{n : A000005(n) = 4}. - Juri-Stepan Gerasimov, Oct 10 2009
MATHEMATICA
Select[Range[200], DivisorSigma[0, #]==4&] (* Harvey P. Dale, Apr 06 2011 *)
PROG
(PARI) is(n)=numdiv(n)==4 \\ Charles R Greathouse IV, May 18 2015
(Magma) [n: n in [1..200] | DivisorSigma(0, n) eq 4]; // Vincenzo Librandi, Jul 16 2015
(Python)
from math import isqrt
from sympy import primepi, integer_nthroot, primerange
def A030513(n):
def f(x): return int(n+x-primepi(integer_nthroot(x, 3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 16 2024
CROSSREFS
Equals the disjoint union of A006881 and A030078.
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Incorrect comments removed by Charles R Greathouse IV, Mar 18 2010
STATUS
approved
Product of the 4th power of a prime (A030514) and a different prime (p^4*q).
+10
36
48, 80, 112, 162, 176, 208, 272, 304, 368, 405, 464, 496, 567, 592, 656, 688, 752, 848, 891, 944, 976, 1053, 1072, 1136, 1168, 1250, 1264, 1328, 1377, 1424, 1539, 1552, 1616, 1648, 1712, 1744, 1808, 1863, 1875, 2032, 2096, 2192, 2224, 2349, 2384, 2416, 2511
OFFSET
1,1
COMMENTS
Subsequence of A030628.
FORMULA
a(n) ~ kn log n with k = 1/P(4) = 1/A085964 = 12.98817.... - Charles R Greathouse IV, Feb 23 2017
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={1, 4}; Select[Range[10000], f] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
max = 500000; A178739 = DeleteCases[Union[Table[Prime[p] Prime[q]^4 Boole[p != q], {p, PrimePi[max/16]}, {q, PrimePi[max/2]}]], 0]; Take[A178739, 50] (* Alonso del Arte, Aug 05 2012 *)
PROG
(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim\2)^(1/4), t=p^4; forprime(q=2, lim\t, if(p==q, next); listput(v, t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
(Python)
from sympy import primepi, primerange, integer_nthroot
def A178739(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum(primepi(x//p**4) for p in primerange(integer_nthroot(x, 4)[0]+1))+primepi(integer_nthroot(x, 5)[0])
return bisection(f, n, n) # Chai Wah Wu, Feb 21 2025
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
Will Nicholes, Jun 08 2010
STATUS
approved
Smallest number with 2n divisors.
(Formerly M1586)
+10
24
2, 6, 12, 24, 48, 60, 192, 120, 180, 240, 3072, 360, 12288, 960, 720, 840, 196608, 1260, 786432, 1680, 2880, 15360, 12582912, 2520, 6480, 61440, 6300, 6720, 805306368, 5040, 3221225472, 7560, 46080, 983040, 25920, 10080, 206158430208, 3932160, 184320, 15120
OFFSET
1,1
COMMENTS
Refers to the least number which is multiplicatively n-perfect, i.e. least number m the product of whose divisors equals m^n. - Lekraj Beedassy, Sep 18 2004
For n=1 to 5, a(n) equals second term of A008578, A007422, A162947, A048945, A030628. - Michel Marcus, Feb 04 2014
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 23.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..3300 (terms 1..1000 from T. D. Noe using A005179)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
Bisection of A005179(n). - Lekraj Beedassy, Sep 21 2004
MATHEMATICA
A005179 = Cases[Import["https://oeis.org/A005179/b005179.txt", "Table"], {_, _}][[All, 2]];
A = {#, DivisorSigma[0, #]}& /@ A005179;
a[n_] := SelectFirst[A, #[[2]] == 2n&][[1]];
a /@ Range[1000] (* Jean-François Alcover, Nov 10 2019 *)
mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[2*n] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *)
PROG
(PARI) a(n)=my(k=2*n); while(numdiv(k)!=2*n, k++); k \\ Charles R Greathouse IV, Jun 23 2017
(Python)
from sympy import divisors
def a(n):
m = 4*n - 2
while len(divisors(m)) != 2*n: m += 1
return m
print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Feb 06 2021
CROSSREFS
Cf. A005179 (n), A061283 (2n-1), A118224 (at least 2n).
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Jud McCranie Oct 15 1997
STATUS
approved
Number of numbers <= n with same number of divisors as n.
+10
14
1, 1, 2, 1, 3, 1, 4, 2, 2, 3, 5, 1, 6, 4, 5, 1, 7, 2, 8, 3, 6, 7, 9, 1, 3, 8, 9, 4, 10, 2, 11, 5, 10, 11, 12, 1, 12, 13, 14, 3, 13, 4, 14, 6, 7, 15, 15, 1, 4, 8, 16, 9, 16, 5, 17, 6, 18, 19, 17, 1, 18, 20, 10, 1, 21, 7, 19, 11, 22, 8, 20, 2, 21, 23, 12, 13, 24, 9, 22, 2, 2, 25, 23, 3, 26, 27
OFFSET
1,3
FORMULA
Ordinal transform of A000005. - Franklin T. Adams-Watters, Aug 28 2006
a(A000040(n)^(p-1)) = n if p is prime. - Robert Israel, May 04 2015
EXAMPLE
a(10)=3 since 6,8,10 each have four divisors. a(11)=5 since 2,3,5,7,11 each have two divisors.
MAPLE
N:= 1000: # to get a(1) to a(N)
R:= Vector(N):
for n from 1 to N do
v:= numtheory:-tau(n);
R[v]:= R[v]+1;
A[n]:= R[v];
od:
seq(A[n], n=1..N); # Robert Israel, May 04 2015
MATHEMATICA
b[_] = 0;
a[n_] := a[n] = With[{t = DivisorSigma[0, n]}, b[t] = b[t]+1];
Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
PROG
(PARI) a(n)=my(d=numdiv(n)); sum(k=1, n, numdiv(k)==d) \\ Charles R Greathouse IV, Sep 02 2015
KEYWORD
nonn
AUTHOR
Henry Bottomley, Dec 21 2001
STATUS
approved
Natural numbers n such that d(n) + 1 is prime.
+10
6
1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 89, 90
OFFSET
1,2
COMMENTS
Natural numbers n such that d(d(n)+1)= 2. - Giovanni Teofilatto, Oct 26 2009
The complement is the union of A001248, A030514, A030516, A030626, A030627, A030629, A030631, A030632, A030633 etc. - R. J. Mathar, Oct 26 2009
LINKS
FORMULA
{1} U A000040 U A030513 U A030515 U A030628 U A030630 U A030634 U A030636 U A137485 U A137491 U A137493 U ... . - R. J. Mathar, Oct 26 2009
MATHEMATICA
Select[Range@90, PrimeQ[DivisorSigma[0, #] + 1] &] (* Vincenzo Librandi, Jan 20 2019 *)
PROG
(PARI) isok(n) = isprime(numdiv(n)+1); \\ Michel Marcus, Jan 20 2019
(Magma) [n: n in [1..100] | IsPrime(NumberOfDivisors(n)+1)]; // Vincenzo Librandi, Jan 20 2019
CROSSREFS
Cf. A000005.
Cf. A073915. - R. J. Mathar, Oct 26 2009
KEYWORD
nonn
AUTHOR
Giovanni Teofilatto, Oct 16 2009
STATUS
approved
Numbers k such that k and k + 1 are both of the form p*q^4 where p and q are distinct primes.
+10
5
2511, 7856, 10287, 15471, 15632, 18063, 20816, 28592, 36368, 40816, 54512, 75248, 88047, 93231, 101168, 126927, 134703, 160624, 163376, 170991, 178767, 210032, 215216, 217808, 220624, 254096, 256527, 274671, 280624, 292976, 334448, 347408, 443151, 482192
OFFSET
1,1
COMMENTS
The smaller of adjacent terms in A178739. - R. J. Mathar, Aug 08 2012
These are numbers n such that n and n+1 both have 10 divisors. Proof: clearly n and n+1 cannot both be of the form p^9, so for contradiction assume either n and n+1 is of the form p*q^4 and the other is of the form r^9 where p, q, and r are prime. So p*q^4 is either r^9 - 1 = (r-1)(r^2+r+1)(r^6+r^3+1) or r^9 + 1 = (r+1)(r^2-r+1)(r^6-r^3+1). But these factors are relatively prime and so cannot represent p*q^4 unless one or more factors are units. But this does not happen for r > 2, and the case r = 2 does not work since neither 511 not 513 is of the form p*q^4. - Charles R Greathouse IV, Jun 19 2016
LINKS
EXAMPLE
2511 is a member as 2511 = 31*3^4 and 2512 = 157*2^4.
MAPLE
with(numtheory):for n from 3 to 500000 do:x:=factorset(n):y:=factorset(n+1):n1:=nops(x):n2:=nops(y):if n1=2 and n2=2 then xx1:=x[1]*x[2]^4 : xx2:=x[2]*x[1]^4:yy1:=y[1]*y[2]^4: yy2:=y[2]*y[1]^4:if (xx1=n or xx2=n) and (yy1=n+1 or yy2=n+1) then printf("%a, ", n):else fi:fi:od:
MATHEMATICA
lst={}; Do[f1=FactorInteger[n]; If[Sort[Transpose[f1][[2]]]=={1, 4}, f2=FactorInteger[n+1]; If[Sort[Transpose[f2][[2]]]=={1, 4}, AppendTo[lst, n]]], {n, 3, 55000}]; lst
(* First run program for A178739 *) Select[A178739, MemberQ[A178739, # + 1] &] (* Alonso del Arte, Aug 05 2012 *)
PROG
(PARI) is(n)=numdiv(n)==10 && numdiv(n+1)==10 \\ Charles R Greathouse IV, Jun 19 2016
(PARI) is(n)=vecsort(factor(n)[, 2])==[1, 4]~ && vecsort(factor(n+1)[, 2])==[1, 4]~ \\ Charles R Greathouse IV, Jun 19 2016
CROSSREFS
Intersection of A005237 and A030628.
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 05 2012
STATUS
approved
Numbers k such that the product of all divisors of k equals k^3.
+10
4
1, 12, 18, 20, 28, 32, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 243, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428
OFFSET
1,2
COMMENTS
Contains the terms of A054753 (products p*q^2 of a prime p and the square of a different prime q), 1, and p^5, where p is prime.
LINKS
FORMULA
{n: A007955(n) = A000578(n)}. - R. J. Mathar, Jul 19 2009
{1} UNION A030515. - R. J. Mathar, Jul 19 2009
Numbers k such that k^2 = product of proper divisors of k. - Juri-Stepan Gerasimov, May 03 2011
EXAMPLE
18 is in the sequence because the product of its divisors is 1 * 2 * 3 * 6 * 9 * 18 = 18^3.
MATHEMATICA
Select[Range[500], Surd[Times@@Divisors[#], 3] == # &] (* Harvey P. Dale, Mar 15 2017 *)
PROG
(PARI) isok(n) = my(d = divisors(n)); prod(i=1, #d, d[i]) == n^3; \\ Michel Marcus, Feb 04 2014
(Python)
from itertools import chain, count, islice
from sympy import divisor_count
def A162947_gen(): # generator of terms
return chain((1, ), filter(lambda n:divisor_count(n)==6, count(2)))
A162947_list = list(islice(A162947_gen(), 20)) # Chai Wah Wu, Jun 25 2022
CROSSREFS
Cf. A111398, A030628. - R. J. Mathar, Jul 19 2009
Cf. A008578 (product of divisors equals n), A007422 (product of divisors equals n^2).
KEYWORD
nonn
AUTHOR
Claudio Meller, Jul 18 2009
EXTENSIONS
Edited by R. J. Mathar, Jul 19 2009
STATUS
approved
Numbers whose number of divisors is divisible by 5.
+10
3
16, 48, 80, 81, 112, 144, 162, 176, 208, 240, 272, 304, 324, 336, 368, 400, 405, 432, 464, 496, 512, 528, 560, 567, 592, 624, 625, 648, 656, 688, 720, 752, 784, 810, 816, 848, 880, 891, 912, 944, 976, 1008, 1040, 1053, 1072, 1104, 1134, 1136, 1168, 1200, 1232
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is 1 - zeta(5)/zeta(4) = 0.0419426259... (Sathe, 1945).
LINKS
Eckford Cohen, Arithmetical Notes, XIII. A Sequal to Note IV, Elemente der Mathematik, Vol. 18 (1963), pp. 8-11.
S. S. Pillai, On a congruence property of the divisor function, J. Indian Math. Soc. (N. S.), Vol. 6, (1942), pp. 118-119.
L. G. Sathe, On a congruence property of the divisor function, American Journal of Mathematics, Vol. 67, No. 3 (1945), pp. 397-406.
FORMULA
A030514 UNION A030628 \ {1} UNION A030633 UNION A030638 UNION A137488 UNION A137493 UNION A175745 UNION A175749 UNION A175752 UNION A175756 UNION ... - R. J. Mathar, May 05 2023
EXAMPLE
16 is a term since A000005(16) = 5 is divisible by 5.
MAPLE
q:= n-> is(irem(numtheory[tau](n), 5)=0):
select(q, [$1..1300])[]; # Alois P. Heinz, Jul 26 2020
MATHEMATICA
Select[Range[1300], Divisible[DivisorSigma[0, #], 5] &]
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jul 26 2020
STATUS
approved
Triangle where T(n,m) = (n+1-m)-th positive integer with (m+1) divisors.
+10
2
2, 3, 4, 5, 9, 6, 7, 25, 8, 16, 11, 49, 10, 81, 12, 13, 121, 14, 625, 18, 64, 17, 169, 15, 2401, 20, 729, 24, 19, 289, 21, 14641, 28, 15625, 30, 36, 23, 361, 22, 28561, 32, 117649, 40, 100, 48, 29, 529, 26, 83521, 44, 1771561, 42, 196, 80, 1024, 31, 841, 27
OFFSET
1,1
COMMENTS
From Peter Munn, May 17 2023: (Start)
As a square array A(n,m), n, m >= 1, read by ascending antidiagonals, A(n,m) is the n-th positive integer with m+1 divisors.
Thus both formats list the numbers with m+1 divisors in their m-th column. For the corresponding sequences giving numbers with a specific number of divisors see the index entries link.
(End)
EXAMPLE
Looking at the 4th row, 7 is the 4th positive integer with 2 divisors, 25 is the 3rd positive integer with 3 divisors, 8 is the 2nd positive integer with 4 divisors and 16 is the first positive integer with 5 divisors. So the 4th row is (7,25,8,16).
The triangle T(n,m) begins:
n\m: 1 2 3 4 5 6 7
---------------------------------------------
1 : 2
2 : 3 4
3 : 5 9 6
4 : 7 25 8 16
5 : 11 49 10 81 12
6 : 13 121 14 625 18 64
7 : 17 169 15 2401 20 729 24
...
Square array A(n,m) begins:
n\m: 1 2 3 4 5 ...
--------------------------------------------
1 : 2 4 6 16 12 ...
2 : 3 9 8 81 18 ...
3 : 5 25 10 625 20 ...
4 : 7 49 14 2401 28 ...
5 : 11 121 15 14641 32 ...
...
MATHEMATICA
t[n_, m_] := Block[{c = 0, k = 1}, While[c < n + 1 - m, k++; If[DivisorSigma[0, k] == m + 1, c++ ]]; k]; Table[ t[n, m], {n, 11}, {m, n}] // Flatten (* Robert G. Wilson v, Jun 07 2006 *)
CROSSREFS
Columns: A000040, A001248, A007422, A030514, A030515, A030516, A030626, A030627, A030628, ... (see the index entries link for more).
Cf. A073915.
Diagonals (equivalently, rows of the square array) start: A005179\{1}, A161574.
Cf. A091538.
KEYWORD
nonn,tabl
AUTHOR
Leroy Quet, May 31 2006
EXTENSIONS
More terms from Robert G. Wilson v, Jun 07 2006
STATUS
approved

Search completed in 0.010 seconds