[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a030000 -id:a030000
     Sort: relevance | references | number | modified | created      Format: long | short | data
Records in A030000.
+20
3
10, 15, 40, 43, 52, 58, 66, 111, 114, 136, 170, 171, 196, 215, 271, 286, 383, 519, 571, 611, 756, 758, 809, 1651, 1889, 2234, 2560, 2750, 3153, 5078, 5126, 5876, 6075, 6382, 6472, 8531, 8876, 9112, 9598, 14847, 17085, 17300, 17700, 20964, 26478, 28019, 28459, 28964, 32407, 32804
OFFSET
1,1
EXAMPLE
From David A. Corneth, Apr 17 2024: (Start)
10 is in the sequence as A030000(0) = 10.
15 is the next term after 10 as the next record in A030000 occurs at k = 7 and A030000(7) = 15. (End)
MATHEMATICA
d2k[k_] := d2k[k] = IntegerString[2^k];
A030000[n_] := Block[{d = IntegerString[n], k = -1}, While[StringFreeQ[d2k[++k], d]]; k];
Block[{upto = 10000, n = -1, a, r = -1}, Reap[While[++n <= upto, If[(a = A030000[n]) > r, Sow[r = a]]]][[2, 1]]]
PROG
(PARI) \\ See PARI link
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo Xausa, Apr 17 2024
EXTENSIONS
More terms from David A. Corneth, Apr 17 2024
STATUS
approved
Positions of records in A030000.
+20
2
0, 7, 11, 22, 50, 61, 78, 100, 121, 122, 127, 155, 263, 548, 1000, 1002, 1003, 1016, 1559, 1583, 1877, 3087, 9634, 10001, 10029, 10199, 10620, 25672, 100002, 100005, 100085, 100116, 100457, 100956, 101597, 101624, 114323, 191974, 1000004, 1000006, 1000055, 1000227, 1000517, 1000717, 1000728, 1027986, 1098714, 1127153, 1429848, 3659369
OFFSET
1,2
EXAMPLE
From David A. Corneth, Apr 17 2024: (Start)
0 is a term as it is the least nonnegative integer and A030000(0) = 10.
7 is a term after 0 as 7 is the first number that is first seen at a k such that 2^k contains 7 as a substring (namely at k = 15). (End)
MATHEMATICA
d2k[k_] := d2k[k] = IntegerString[2^k];
A030000[n_] := Block[{d = IntegerString[n], k = -1}, While[StringFreeQ[d2k[++k], d]]; k];
Block[{upto = 10000, n = -1, a, r = -1}, Reap[While[++n <= upto, If[(a = A030000[n]) > r, r = a; Sow[n]]]][[2, 1]]]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo Xausa, Apr 17 2024
EXTENSIONS
More terms from David A. Corneth, Apr 17 2024
STATUS
approved
Duplicate of A030000.
+20
0
10, 0, 1, 5, 2, 8, 4, 15, 3, 12, 10, 40, 7, 17, 18, 21, 4, 27, 30, 13, 11, 18, 43, 41, 10, 8
OFFSET
0,1
KEYWORD
dead
STATUS
approved
Smallest power of 2 whose decimal expansion contains n.
+10
17
1024, 1, 2, 32, 4, 256, 16, 32768, 8, 4096, 1024, 1099511627776, 128, 131072, 262144, 2097152, 16, 134217728, 1073741824, 8192, 2048, 262144, 8796093022208, 2199023255552, 1024, 256, 262144, 32768, 128, 4294967296, 4194304, 131072, 32, 33554432, 134217728, 33554432
OFFSET
0,1
LINKS
MATHEMATICA
a[n_] := (k = 0; While[ !MatchQ[ IntegerDigits[2^k], {___, Sequence @@ IntegerDigits[n], ___}], k++]; 2^k); Table[a[n], {n, 1, 30}](* Jean-François Alcover, Nov 30 2011 *)
Module[{p2=2^Range[0, 50]}, Table[SelectFirst[p2, SequenceCount[ IntegerDigits[ #], IntegerDigits[ n]]>0&], {n, 0, 40}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 13 2019 *)
PROG
(Haskell)
import Data.List (isInfixOf)
a030001 n = head $ filter ((show n `isInfixOf`) . show) a000079_list
-- Reinhard Zumkeller, Nov 02 2011
(Python)
def a(n):
k, strn = 0, str(n)
while strn not in str(2**k): k += 1
return 2**k
print([a(n) for n in range(36)]) # Michael S. Branicky, Apr 03 2024
CROSSREFS
Cf. A030000 (the exponents), A000079.
KEYWORD
nonn,base,nice,look
EXTENSIONS
a(30) corrected by Reinhard Zumkeller, Nov 02 2011
a(0) added by N. J. A. Sloane, Jul 04 2017
STATUS
approved
2^a(n) is the smallest power of 2 beginning with n.
+10
12
0, 1, 5, 2, 9, 6, 46, 3, 53, 10, 50, 7, 17, 47, 77, 4, 34, 54, 84, 11, 31, 51, 61, 81, 8, 18, 38, 48, 68, 78, 98, 5, 25, 35, 45, 55, 75, 85, 95, 12, 22, 32, 42, 145, 52, 62, 72, 82, 92, 102, 9, 19, 29, 39, 142, 49, 59, 162, 69, 79, 89, 192, 99, 6, 16, 119, 26
OFFSET
1,3
REFERENCES
A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems With Elementary Solutions, Vol. 1, pp. 29, 199-200, Prob. 91a, Dover, NY, 1987.
LINKS
MATHEMATICA
f[n_] := Block[{k = 1, m = Floor[ Log[10, n]]}, While[ Log[10, 2^k] < Floor[ Log[10, n]], k++ ]; While[ Quotient[2^k, 10^(Floor[k*Log[10, 2]] - m)] != n, k++ ]; k]; f[1] = 0;; Array[f, 73] (* Robert G. Wilson v, Jun 02 2009 *)
PROG
(Haskell)
import Data.List (isPrefixOf, findIndex)
import Data.Maybe (fromJust)
a018856 n =
fromJust $ findIndex (show n `isPrefixOf`) $ map show a000079_list
-- Reinhard Zumkeller, Aug 04 2011
(Python)
from itertools import count
def aupton(terms):
adict, pow2 = dict(), 1
for i in count(0):
s = str(pow2)
for j in range(len(s)):
t = int(s[:j+1])
if t > terms:
break
if t not in adict:
adict[t] = i
if len(adict) == terms:
return [adict[i+1] for i in range(terms)]
pow2 *= 2
print(aupton(67)) # Michael S. Branicky, Apr 08 2023
CROSSREFS
Cf. A018802.
Cf. A100129 (a(n) = n).
KEYWORD
nonn,base
STATUS
approved
Smallest power of 3 whose decimal expansion contains n.
+10
12
59049, 1, 27, 3, 243, 6561, 6561, 27, 81, 9, 10460353203, 1162261467, 129140163, 31381059609, 177147, 1594323, 129140163, 177147, 2187, 19683, 387420489, 2187, 1162261467, 1594323, 243, 2541865828329, 1162261467, 27, 282429536481, 729, 43046721, 531441, 1594323
OFFSET
0,1
COMMENTS
This is to 3 as A030001 is to 2.
FORMULA
a(n) = MIN{A000244(i) such that n in decimal representation is a substring of A000244(i)}.
EXAMPLE
a(1) = 1 because 3^0 = 1 has "1" as a substring (not a proper substring, though).
a(2) = 27 because 3^3 = 27 has "2" as a substring.
a(10) = 10460353203 because 3^21 = 10460353203 is the smallest power of 3 whose decimal expansion contains "10" (in this case, "10" happens to be the left-hand or initial digits, but that is not generally true).
MATHEMATICA
A176763[n_] := Block[{k = -1}, While[StringFreeQ[IntegerString[3^++k], IntegerString[n]]]; 3^k]; Array[A176763, 50, 0] (* Paolo Xausa, Apr 03 2024 *)
PROG
(Python)
def a(n):
k, strn = 0, str(n)
while strn not in str(3**k): k += 1
return 3**k
print([a(n) for n in range(33)]) # Michael S. Branicky, Apr 03 2024
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Apr 25 2010
EXTENSIONS
More terms from Sean A. Irvine and Jon E. Schoenfield, May 05 2010
a(0) prepended by Paolo Xausa, Apr 03 2024
STATUS
approved
Smallest positive number k such that 2^k contains n.
+10
11
10, 4, 1, 5, 2, 8, 4, 15, 3, 12, 10, 40, 7, 17, 18, 21, 4, 27, 30, 13, 11, 18, 43, 41, 10, 8, 18, 15, 7, 32, 22, 17, 5, 25, 27, 25, 16, 30, 14, 42, 12, 22, 19, 22, 18, 28, 42, 31, 11, 32, 52, 9, 19, 16, 25, 16, 8, 20, 33, 33, 23, 58, 18, 14, 6, 16, 46, 24, 15, 34, 29, 21, 17, 30
OFFSET
0,1
LINKS
Popular Computing (Calabasas, CA), Two Tables, Vol. 1, (No. 9, Dec 1973), page PC9-16.
EXAMPLE
a(7) = 15 because 2^15 = 32768.
MATHEMATICA
a = {}; Do[k = 1; While[ StringPosition[ ToString[2^k], ToString[n] ] == {}, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
PROG
(Python)
def A063565(n):
....s, k, k2 = str(n), 1, 2
....while True:
........if s in str(k2):
............return k
........k += 1
........k2 *= 2 # Chai Wah Wu, Jun 20 2015
CROSSREFS
Apart from initial term, a duplicate of A030000.
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Aug 10 2001
EXTENSIONS
More terms from Hans Havermann
STATUS
approved
a(n) is the smallest k such that prime(k) contains the digits of n as a substring.
+10
5
26, 5, 1, 2, 13, 3, 18, 4, 23, 8, 26, 5, 31, 6, 35, 36, 38, 7, 42, 8, 197, 47, 48, 9, 53, 54, 56, 31, 60, 10, 63, 11, 216, 51, 69, 71, 73, 12, 76, 34, 79, 13, 82, 14, 86, 88, 89, 15, 93, 35, 96, 36, 98, 16, 100, 102, 103, 37, 107, 17, 110, 18, 257, 38, 116
OFFSET
0,1
FORMULA
A062584(n) = prime(a(n)). - Giovanni Resta, Apr 29 2017
a(n) >= A088781(n) for n >= 1. The smallest positive n for which a(n) > A088781(n) is 114. - Pontus von Brömssen, Nov 29 2024
EXAMPLE
0 appears first in 26th prime (101), so a(0) = 26;
9 appears first in 8th prime (19), so a(9) = 8;
24 appears first in 53rd prime (241), so a(24) = 53.
MATHEMATICA
tg=101; T=0*Range[tg]; k=0; subs[n_] := Block[{d = IntegerDigits[n]}, Flatten@ Table[ FromDigits@ Take[d, {i, j}], {j, Length[d]}, {i, j}]]; While[tg > 0, s = subs[Prime[++k]]; Do[ If[e <= 100 && T[[e+1]] == 0, T[[e+1]] = k; tg--], {e, s}]]; T (* Giovanni Resta, Apr 29 2017 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Apr 03 2003
EXTENSIONS
Data corrected by Giovanni Resta, Apr 29 2017
Name clarified by Pontus von Brömssen, Nov 29 2024
STATUS
approved
Single-digit numbers in the order in which they first appear in the decimal expansions of powers of 2, followed by the two-digit numbers in the order in which they appear, then the three-digit numbers, and so on.
+10
4
1, 2, 4, 8, 6, 3, 5, 0, 9, 7, 16, 32, 64, 12, 28, 25, 56, 51, 10, 24, 20, 48, 40, 96, 81, 19, 92, 63, 38, 84, 27, 76, 68, 65, 55, 53, 36, 13, 31, 72, 26, 62, 21, 14, 44, 52, 42, 88, 85, 57, 97, 71, 15, 41, 94, 43, 30, 83, 86, 60, 67, 77, 33, 35, 54, 34, 17, 45
OFFSET
1,2
COMMENTS
Apparently this algorithm applied to most sequences will produce a fractal scatterplot graph. - David Williams, Jan 20 2019
LINKS
EXAMPLE
1,2,4,8,16,32,64,128,256,512,1024, ..., 4096, ..., 32768, ... gives 1,2,4,8,6,3,5,0,9,7.
Then we get 16,32,64,12,28,25,56,51,10,24,20,48,40,96,81,19,92,...
11 does not appear until 2^40 = 1099511627776.
PROG
(PARI) See Links section.
CROSSREFS
See A030000 for an inverse.
KEYWORD
nonn,base,look
AUTHOR
David Williams, Oct 26 2018
EXTENSIONS
Edited by N. J. A. Sloane, Oct 27 2018
More terms from Rémy Sigrist, Oct 27 2018
STATUS
approved
6^a(n) is smallest nonnegative power of 6 containing the string 'n'.
+10
3
9, 0, 3, 2, 6, 6, 1, 5, 12, 4, 9, 16, 4, 13, 28, 18, 3, 10, 15, 21, 26, 3, 22, 12, 27, 26, 17, 7, 16, 4, 13, 22, 24, 12, 27, 19, 2, 21, 22, 30, 13, 14, 22, 25, 17, 15, 6, 15, 28, 15, 21, 31, 46, 23, 28, 18, 6, 15, 20, 17, 10, 8, 11, 33, 14, 6, 6, 8, 18, 9, 11, 22, 26, 17, 16, 33
OFFSET
0,1
MATHEMATICA
Table[k = 0; While[ StringPosition[ ToString[6^k], ToString[n] ] == {}, k++ ]; k, {n, 0, 75} ]
Module[{nn=100, p}, p=Table[{n, 6^n}, {n, 0, nn}]; Table[SelectFirst[p, SequenceCount[ IntegerDigits[ #[[2]]], IntegerDigits[k]]>0&], {k, 0, nn}]][[;; , 1]] (* Harvey P. Dale, Jun 02 2023 *)
CROSSREFS
Cf. A030000. Essentially the same as A063569.
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Jun 24 2001
STATUS
approved

Search completed in 0.013 seconds