[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a035512 -id:a035512
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of strongly connected digraphs with n labeled nodes.
(Formerly M5064)
+10
34
1, 1, 18, 1606, 565080, 734774776, 3523091615568, 63519209389664176, 4400410978376102609280, 1190433705317814685295399296, 1270463864957828799318424676767488, 5381067966826255132459611681511359329536, 90765788839403090457244128951307413371883494400
OFFSET
1,3
COMMENTS
As usual, there can be an edge both from i to j and from j to i.
REFERENCES
Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 428.
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
R. W. Robinson, personal communication.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1980.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..58 (first 18 terms from R. W. Robinson)
Nicholas R. Beaton, Walks obeying two-step rules on the square lattice: full, half and quarter planes, arXiv:2010.06955 [math.CO], 2020.
Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002 [Local copy, with permission]
A. Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
Qipeng Kuang, Ondřej Kuželka, Yuanhong Wang, and Yuyi Wang, Bridging Weighted First Order Model Counting and Graph Polynomials, arXiv:2407.11877 [cs.LO], 2024. See p. 33.
J. Ostroff, Counting connected digraphs with gradings, Phd. Thesis (2013), Table 1.
FORMULA
a(n) ~ 2^(n*(n-1)). - Vaclav Kotesovec, May 19 2015
EXAMPLE
a(3) = 18 (the symbol = denotes a pair of parallel edges): 1->2->3->1 (2 such); 1=2->3->1 (6); 1=2=3->1 (6); 1=2=3=1 (1); 1=2=3 (3).
MAPLE
A003030 := proc(n)
option remember;
if n =1 then
1;
else
A054947(n)+add(binomial(n-1, t-1)*procname(t)*A054947(n-t), t=1..n-1) ;
end if;
end proc:
seq(A003030(n), n=1..10) ; # R. J. Mathar, May 10 2016
MATHEMATICA
b[1]=1; b[n_]:=b[n]=2^(n*(n-1))-Sum[Binomial[n, j]*2^((n-1)*(n-j))*b[j], {j, 1, n-1}];
a[1]=1; a[n_]:=a[n]=b[n]+Sum[Binomial[n-1, j-1]*b[n-j]*a[j], {j, 1, n-1}];
Table[a[n], {n, 1, 15}] (* Vaclav Kotesovec, May 19 2015 *)
PROG
(PARI) \\ here B(n) is A054947 as vector.
B(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=2^(n*(n-1))-sum(j=1, n-1, binomial(n, j)*2^((n-1)*(n-j))*v[j])); v}
seq(n)={my(u=B(n), v=vector(n)); v[1]=1; for(n=2, #v, v[n]=u[n]+sum(j=1, n-1, binomial(n-1, j-1)*u[n-j]*v[j])); v} \\ Andrew Howroyd, Sep 10 2018
CROSSREFS
Cf. A035512, A054946 (strongly connected labeled tournaments), A054947.
KEYWORD
nonn,nice
EXTENSIONS
a(12)-a(13) added by Andrew Howroyd, Sep 10 2018
STATUS
approved
Number of weakly connected digraphs with n unlabeled nodes.
(Formerly M2067)
+10
25
1, 2, 13, 199, 9364, 1530843, 880471142, 1792473955306, 13026161682466252, 341247400399400765678, 32522568098548115377595264, 11366712907233351006127136886487, 14669074325902449468573755897547924182
OFFSET
1,2
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 124 and 241.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Alexander G. Ginsberg, Firing-Rate Models in Computational Neuroscience: New Applications and Methodologies, Ph. D. Dissertation, Univ. Michigan, 2023. See p. 7.
Martin Golubitsky and Yangyang Wang, Infinitesimal homeostasis in three-node input-output networks, Journal of Mathematical Biology (2020) Vol. 80, 1163-1185.
A. Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
X. Li, D. S. Stones, H. Wang, H. Deng, X. Liu and G. Wang, NetMODE: Network Motif Detection without Nauty, PLoS ONE 7(12): e50093. doi:10.1371/journal.pone.0050093. - From N. J. A. Sloane, Feb 02 2013
Eric Weisstein's World of Mathematics, Weakly Connected Digraph
FORMULA
a(n) = (1/n)*Sum_{d|n} mu(n/d)*A003084(d), where mu is Moebius function.
Inverse Euler transform of A000273. - Andrew Howroyd, Dec 27 2021
MAPLE
# The function EulerInvTransform is defined in A358451.
a := EulerInvTransform(A000273):
seq(a(n), n = 1..13); # Peter Luschny, Nov 21 2022
MATHEMATICA
Needs["Combinatorica`"]; d[n_] := GraphPolynomial[n, x, Directed] /. x -> 1; max = 13; se = Series[ Sum[a[n]*x^n/n, {n, 1, max}] - Log[1 + Sum[ d[n]*x^n, {n, 1, max}]], {x, 0, max}]; sol = SolveAlways[ se == 0, x]; Do[ A003084[n] = a[n] /. sol[[1]], {n, 1, max}]; ClearAll[a, d]; a[n_] := (1/n)*Sum[ MoebiusMu[ n/d ] * A003084[d], {d, Divisors[n]} ]; Table[ a[n], {n, 1, max}] (* Jean-François Alcover, Feb 01 2012, after formula *)
terms = 13;
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];
d[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);
A003084 = CoefficientList[Log[Sum[d[n] x^n, {n, 0, terms+1}]] + O[x]^(terms + 1), x] Range[0, terms] // Rest;
a[n_] := (1/n)*Sum[MoebiusMu[n/d] * A003084[[d]], {d, Divisors[n]}];
Table[a[n], {n, 1, terms}] (* Jean-François Alcover, Aug 30 2019, after Andrew Howroyd in A003084 *)
PROG
(Python)
from functools import lru_cache
from itertools import product, combinations
from fractions import Fraction
from math import prod, gcd, factorial
from sympy import mobius, divisors
from sympy.utilities.iterables import partitions
def A003085(n):
@lru_cache(maxsize=None)
def b(n): return int(sum(Fraction(1<<sum(p[r]*p[s]*gcd(r, s)<<1 for r, s in combinations(p.keys(), 2))+sum(r*(q*r-1) for q, r in p.items()), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
@lru_cache(maxsize=None)
def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1, n))
return sum(mobius(n//d)*c(d) for d in divisors(n, generator=True))//n # Chai Wah Wu, Jul 05 2024
CROSSREFS
Row sums of A054733.
Column sums of A350789.
The labeled case is A003027.
Cf. A000273, A003084, A035512 (strongly connected).
KEYWORD
nonn,nice,changed
EXTENSIONS
More terms from Vladeta Jovovic, Jan 09 2000
STATUS
approved
Number of strongly connected oriented graphs on n unlabeled nodes.
+10
11
1, 1, 0, 1, 4, 76, 4232, 611528, 222688092, 205040866270, 484396550160186, 2987729989350536868, 48933147333828638153224, 2160018687398735805070288200, 260218032038985813416099131315377, 86440094822917159858790627703492969772
OFFSET
0,5
LINKS
Andrew Howroyd, PARI Program, Jan 2022.
R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
PROG
(PARI) A350489seq(15) \\ See Links for program code.
CROSSREFS
Row sums of A350750.
The labeled version is A350730.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jan 01 2022
STATUS
approved
Number of digraphs on n unlabeled nodes with a sink (or, with a source).
+10
10
1, 2, 12, 185, 8990, 1505939, 875542491, 1789247738400, 13018820342147705, 341188114831706152794, 32520852428719860881939391, 11366533535523591133597276823755, 14669006027884671703581740693080811331, 70315546525961698601351615055416574931833334
OFFSET
1,2
COMMENTS
Here a sink is defined to be a node to which all other nodes have a directed path. - Andrew Howroyd, Dec 27 2021
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218 (incorrect version).
Ronald C. Read, email to N. J. A. Sloane, 28 August, 2000.
LINKS
PROG
(PARI) \\ See PARI link in A350794 for program code.
A051421seq(15) \\ Andrew Howroyd, Jan 21 2022
CROSSREFS
The labeled case is A003028.
Row sums of A057277.
KEYWORD
nonn,nice
EXTENSIONS
a(6) corrected and a(7) from Sean A. Irvine, Sep 11 2021
a(0)=1 removed and terms a(8) and beyond from Andrew Howroyd, Jan 21 2022
STATUS
approved
Triangle T(n,k) of number of strongly connected digraphs on n unlabeled nodes and with k arcs, k=0..n*(n-1).
+10
10
1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 4, 16, 22, 22, 11, 5, 1, 1, 0, 0, 0, 0, 0, 1, 7, 58, 240, 565, 928, 1065, 953, 640, 359, 150, 59, 16, 5, 1, 1, 0, 0, 0, 0, 0, 0, 1, 10, 165, 1281, 6063, 19591, 47049, 87690, 131927, 163632, 170720, 151238, 115122, 75357, 42745, 20891, 8877, 3224, 1039, 286, 76, 17, 5, 1, 1
OFFSET
1,9
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..2680 (rows 1..20)
EXAMPLE
Triangle begins:
[1] 1;
[2] 0,0,1;
[3] 0,0,0,1,2,1,1;
[4] 0,0,0,0,1,4,16,22,22,11,5,1,1;
...
The number of strongly connected digraphs on 3 unlabeled nodes is 5 = 1+2+1+1.
PROG
(PARI) \\ See PARI link in A350489 for program code.
{ my(A=A057276rows(5)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 13 2022
CROSSREFS
Row sums give A035512.
Column sums give A350752.
The labeled version is A057273.
KEYWORD
nonn,tabf
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Sep 14 2000
EXTENSIONS
Terms a(46) and beyond from Andrew Howroyd, Jan 13 2022
STATUS
approved
Number of unlabeled strongly connected digraphs with n arcs.
+10
10
1, 0, 1, 1, 3, 6, 25, 91, 442, 2241, 12591, 75180, 478648, 3211245, 22635956, 166828221, 1281518573, 10229858290, 84652925554, 724601312400, 6403522811765, 58327076550161, 546764617643250, 5267719312771122, 52096218005705959, 528285485054771639
OFFSET
0,5
PROG
(PARI) A350752seq(20) \\ See PARI link in A350489 for program code.
CROSSREFS
Row sums of A350753.
Column sums of A057276.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jan 13 2022
STATUS
approved
Number of digraphs with a source and a sink on n unlabeled nodes.
+10
9
1, 2, 11, 173, 8675, 1483821, 870901739, 1786098545810, 13011539185371716, 341128981258340797839, 32519138088689298538132027, 11366354205366488038532562993809, 14668937734550708660348161757913398001, 70315451107713339843384354196009678853303102
OFFSET
1,2
COMMENTS
Here a source is defined to be a node which has a directed path to all other nodes and a sink to be a node to which all other nodes have a directed path. A digraph with a source and a sink can also be described as initially-finally connected. - Andrew Howroyd, Jan 01 2022
REFERENCES
V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 246.
LINKS
PROG
(PARI) \\ See PARI link in A350794 for program code.
A049531seq(15) \\ Andrew Howroyd, Jan 21 2022
CROSSREFS
Row sums of A057278.
The labeled version is A049524.
KEYWORD
nonn,nice
AUTHOR
Vladeta Jovovic, Goran Kilibarda
EXTENSIONS
a(6)-a(7) from Andrew Howroyd, Jan 01 2022
Terms a(8) and beyond from Andrew Howroyd, Jan 20 2022
STATUS
approved
Number of unilateral digraphs with n unlabeled nodes.
(Formerly M2011)
+10
6
1, 1, 2, 11, 171, 8603, 1478644, 870014637
OFFSET
0,3
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218.
Ronald C. Read, email to N. J. A. Sloane, 28 August, 2000.
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. W. Robinson, Counting strong digraphs (research announcement), J. Graph Theory 1, 1977, pp. 189-190.
CROSSREFS
KEYWORD
nonn,nice,more
EXTENSIONS
Note that Read and Wilson incorrectly give a(4) as 172 - thanks to Vladeta Jovovic, Goran Kilibarda for finding this error and for verifying a(5).
a(7) from Sean A. Irvine, Jan 26 2015
STATUS
approved
Number of quasi-initially connected digraphs on n unlabeled nodes.
+10
4
1, 2, 13, 197, 9312, 1528634, 880277970
OFFSET
1,2
COMMENTS
From Sean A. Irvine, Aug 01 2021: (Start)
A quasi-initially connected digraph is a digraph containing at least one vertex v such that every vertex u in the graph can either be reached from v or v can be reached from u (while obeying the directions on the edges).
There is no known formula. (End)
LINKS
Sean A. Irvine, Java program (github)
V. Jovovic and G. Kilibarda, Enumeration of labeled quasi-initially connected digraphs, Discrete Math., 224 (2000), 151-163.
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda
EXTENSIONS
a(6)-a(7) from Sean A. Irvine, Aug 01 2021
STATUS
approved
Number of unlabeled semi-strong digraphs on n nodes with mutually nonisomorphic components.
+10
4
1, 1, 4, 78, 4960, 1041872, 704369984, 1579641879248, 12137443766888448, 328148810741254606592, 31830752699315833628787200, 11234243165959817684710307801600, 14576241398832991116522929933694031872, 70075699209573863790264288901653500497274880
OFFSET
1,3
COMMENTS
A digraph is semi-strong if all its weakly connected components are strongly connected. - Andrew Howroyd, Jan 14 2022
REFERENCES
V. A. Liskovets, A contribution to the enumeration of strongly connected digraphs, Dokl. AN BSSR, 17 (1973), 1077-1080 (Russian), MR49#4849.
LINKS
V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
FORMULA
G.f.: 1 - Product_{n > 0} (1 - x^n)^A035512(n). - Andrew Howroyd, Sep 10 2018
MATHEMATICA
m = 15;
A035512 = Cases[Import["https://oeis.org/A035512/b035512.txt", "Table"], {_, _}][[All, 2]];
gf = 1 - Product[(1 - x^n)^A035512[[n + 1]], {n, 1, m}];
CoefficientList[gf + O[x]^m , x] // Rest (* Jean-François Alcover, Aug 26 2019, after Andrew Howroyd *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 24 2000
EXTENSIONS
More terms from Vladeta Jovovic, Mar 11 2003
a(12)-a(14) from Andrew Howroyd, Sep 10 2018
STATUS
approved

Search completed in 0.013 seconds