[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a021823 -id:a021823
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of 1/(1 - 23*x + 23*x^2 - x^3).
+10
21
1, 23, 506, 11110, 243915, 5355021, 117566548, 2581109036, 56666832245, 1244089200355, 27313295575566, 599648413462098, 13164951800590591, 289029291199530905, 6345479454589089320, 139311518709760434136, 3058507932160140461673
OFFSET
0,2
COMMENTS
Partial sums of A077421.
FORMULA
G.f.: 1/((1-x)*(1 - 22*x + x^2)).
a(n) = (((6+sqrt(30))^(2*n+3) + (6-sqrt(30))^(2*n+3))/6^(n+1) - 12)/240.
a(n) = a(-n-3) = 23*a(n-1) - 23*a(n-2) + a(n-3).
a(n)*a(n+2) = a(n+1)*(a(n+1)-1).
a(n+1) - 11*a(n) = A133285(n+2).
11*a(n+1) - a(n) = (1/5)*A157096(n+2).
a(n) = (1/20)*(-1 + 21*ChebyshevU(n, 11) - ChebyshevU(n-1, 11)). - G. C. Greubel, Feb 07 2022
MAPLE
a:= n-> (<<0|1|0>, <0|0|1>, <1|-23|23>>^n. <<1, 23, 506>>)[1, 1]:
seq(a(n), n=0..20); # Alois P. Heinz, Jun 15 2012
MATHEMATICA
CoefficientList[Series[1/(1 - 23 x + 23 x^2 - x^3), {x, 0, 16}], x]
LinearRecurrence[{23, -23, 1}, {1, 23, 506}, 20] (* Vincenzo Librandi, Aug 18 2013 *)
PROG
(PARI) Vec(1/(1-23*x+23*x^2-x^3)+O(x^17))
(Maxima) makelist(coeff(taylor(1/(1-23*x+23*x^2-x^3), x, 0, n), x, n), n, 0, 16);
(Magma) m:=17; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-23*x+23*x^2-x^3)));
(Magma) I:=[1, 23, 506]; [n le 3 select I[n] else 23*Self(n-1)-23*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 18 2013
(Sage) [(1/20)*(-1 +21*chebyshev_U(n, 11) -chebyshev_U(n-1, 11)) for n in (0..30)] # G. C. Greubel, Feb 07 2022
CROSSREFS
Sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3): A334673 (k=24), A212336 (k=23), A212335 (k=22), A097833 (k=21), A097832 (k=20), A049664 (k=19), A097831-A097829 (k=18,17,16), A076139 (k=15), A097828-A097826 (k=14,13,12), A097784 (k=11), A092420 (k=10), A076765 (k=9), A092521 (k=8), A053142 (k=7), A089817(k=6), A061278 (k=5), A027941 (k=4), A000217 (k=3), A021823 (k=2), A133872 (k=1), A079978 (k=0).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 08 2012
STATUS
approved
Periodic sequence (2, 2, 1, 0, 0, 1).
+10
12
2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1
OFFSET
1,1
COMMENTS
Second column of triangular array T defined in A131022.
FORMULA
a(1) = a(2) = 2, a(3) = 1, a(4) = a(5) = 0, a(6) = 1; for n > 6, a(n) = a(n-6).
G.f.: (2-2*x+x^2)/((1-x)*(1-x+x^2)).
a(n) = A021823(n+2).
a(n) = floor(((n+3) mod 6)/4)+floor(((n+2) mod 3)/2). - Gary Detlefs, Oct 02 2013
a(n) = 1+2/sqrt(3)*sin(Pi/3*n). - Werner Schulte, Jul 21 2017
MATHEMATICA
PadRight[{}, 120, {2, 2, 1, 0, 0, 1}] (* or *) LinearRecurrence[{2, -2, 1}, {2, 2, 1}, 120] (* Harvey P. Dale, Jul 16 2012 *)
PROG
(PARI) {m=105; for(n=1, m, r=(n-1)%6; print1(if(r<2, 2, if(r==2||r==5, 1, 0)), ", "))}
(Magma) m:=105; [ [2, 2, 1, 0, 0, 1][(n-1) mod 6 + 1]: n in [1..m] ];
CROSSREFS
Cf. A131022, A021823. Other columns of T are in A088911, A131027, A131028, A131029, A131030.
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, following a suggestion of Paul Curtz, Jun 10 2007
STATUS
approved
Numbers m such that the largest digit in the decimal expansion of 1/m is 2.
+10
9
5, 45, 50, 450, 495, 500, 819, 825, 4500, 4545, 4950, 4995, 5000, 8190, 8250, 8325, 45000, 45045, 45450, 47619, 49500, 49950, 49995, 50000, 81819, 81900, 82500, 83250, 83325, 89109, 450000, 450045, 450450, 454500, 454545, 476190, 495000, 499500, 499950, 499995, 500000
OFFSET
1,1
COMMENTS
If m is a term, 10*m is also a term.
5 is the only prime up to 2.6*10^8 (comments in A333237).
Some subsequences: {45, 4545, 454545, ...}, {45045, 45045045, 45045045045, ...}, {45, 495, 4995, 49995, ...}, {819, 81819, 8181819, ...}, {825, 8325, 83325, 833325...}, ...
The subsequence of terms where 1/m has only digits {0,2} is m = 5*A333402 = 5, 45, 50, etc. A333402 is those t where 1/t has only digits {0,1}, so that 1/(5*t) = 2*(1/t)*(1/10) has digits {0,2}, starting from 1/5 = 0.2. These m are also A333402/2 of the even terms from A333402, since A333402 (like here) is self-similar in that the multiples of 10, divided by 10, are the sequence itself. - Kevin Ryde, Feb 13 2021
EXAMPLE
As 1/45 = 0.0202020202..., 45 is a term.
As 1/825 = 0.0012121212121212...., 825 is a term.
As 1/47619 = 0.000021000021000021..., 47619 is a term.
As 1/4545045 = 0.000000220019824..., 4545045 is not a term.
MATHEMATICA
Select[Range[10^5], Max[RealDigits[1/#][[1]]] == 2 &] (* Amiram Eldar, Feb 10 2021 *)
PROG
(Python)
from itertools import count, islice
from sympy import n_order, multiplicity
def A341383_gen(startvalue=1): # generator of terms >= startvalue
for m in count(max(startvalue, 1)):
m2, m5 = multiplicity(2, m), multiplicity(5, m)
if max(str(10**(max(m2, m5)+n_order(10, m//2**m2//5**m5))//m)) == '2':
yield m
A341383_list = list(islice(A341383_gen(), 10)) # Chai Wah Wu, Feb 07 2022
CROSSREFS
Cf. A333236.
Similar with largest digit k: A333402 (k=1), A333237 (k=9).
Subsequence: A093143 \ {1}.
Decimal expansion: A021499 (1/495), A021823 (1/819).
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Feb 10 2021
EXTENSIONS
Missing terms added by Amiram Eldar, Feb 10 2021
STATUS
approved
Cumulative sums of A010892.
+10
8
1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0
OFFSET
0,2
FORMULA
G.f.: 1/((1 - x)*(1 - x + x^2)). - Philippe Deléham, Oct 11 2011
a(n) = a(n-1) - a(n-2) + 1. - Arkadiusz Wesolowski, Jun 08 2013
a(n) = -floor((n - 4)/6) - floor((n - 3)/6) + floor((n - 1)/6) + floor(n/6). - John M. Campbell, Dec 23 2016
E.g.f.: cosh(x) + 2*exp(x/2)*sin(sqrt(3)*x/2)/sqrt(3) + sinh(x). - Stefano Spezia, Feb 20 2023
MATHEMATICA
Table[-Floor[1/6 (-4 + n)] - Floor[1/6 (-3 + n)] + Floor[1/6 (-1 + n)] + Floor[n/6], {n, 0, 100}] (* John M. Campbell, Dec 23 2016 *)
LinearRecurrence[{2, -2, 1}, {1, 2, 2}, 100] (* Harvey P. Dale, Jul 17 2020 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mark Dols, Sep 02 2009
EXTENSIONS
Offset corrected by John M. Campbell, Dec 23 2016
STATUS
approved
Expansion of g.f. (1 - x)^(-1)/(1 - 2*x + 2*x^2 + x^3).
+10
7
1, 3, 5, 6, 6, 6, 7, 9, 11, 12, 12, 12, 13, 15, 17, 18, 18, 18, 19, 21, 23, 24, 24, 24, 25, 27, 29, 30, 30, 30, 31, 33, 35, 36, 36, 36, 37, 39, 41, 42, 42, 42, 43, 45, 47, 48, 48, 48, 49, 51, 53, 54, 54, 54, 55, 57, 59, 60, 60, 60, 61, 63, 65, 66, 66, 66, 67, 69, 71, 72, 72, 72, 73, 75
OFFSET
0,2
COMMENTS
Partial sums of A021823. Second partial sums of A010892. - Paul Barry, Jun 06 2003
Row sums of A144083. - Gary W. Adamson, Sep 10 2008
FORMULA
G.f.: 1/((1-x)^2*(1-x+x^2)).
a(n) = Sum_{k=0..n} (k+1)*2*sin(Pi(n-k)/3 + Pi/3)/sqrt(3). - Paul Barry, May 18 2004
a(n) = Sum_{k=0..n} binomial(n-2k, n-k-1). - Paul Barry, Jan 15 2005
a(n) = n + 2 + (-1 + n - 3*floor(n/3))*(-1)^floor(n/3). - Tani Akinari, Jun 27 2013
a(n) = n + 1 + a(n-1) - a(n-2), with a(-1) = a(-2) = 0. - Richard R. Forberg, Jul 11 2013
a(n) = 3*a(n-1) - 4*a(n-2) + 3*a(n-3) - 1*a(n-4). - Joerg Arndt, Jul 12 2013
a(n) = Sum_{k=0..n} (-1)^k*(n+1-k)*b(k), where b(n) = A049347(n). - Mircea Merca, Feb 04 2014
E.g.f.: exp(x)*(2 + x) + exp(x/2)*(sqrt(3)*sin(sqrt(3)*x/2) - 3*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Feb 11 2023
Sum_{n>=0} (-1)^n/a(n) = log(2)/3 + log(3)/2 = log(108)/6. - Amiram Eldar, Feb 14 2023
MAPLE
A010892 := proc(n) op(1+(n mod 6), [1, 1, 0, -1, -1, 0]) ; end proc:
A077859 := proc(n) n+2+A010892(n+4) ; end proc:
seq(A077859(n), n=0..50) ; # R. J. Mathar, Mar 22 2011
MATHEMATICA
CoefficientList[Series[(1 - x)^(-1)/(1 - 2 x + 2 x^2 - x^3), {x, 0, 100}], x] (* Vincenzo Librandi, Feb 04 2014 *)
LinearRecurrence[{3, -4, 3, -1}, {1, 3, 5, 6}, 80] (* Harvey P. Dale, Apr 21 2023 *)
PROG
(PARI) Vec(1/(1-x)/(1-2*x+2*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
(Magma) I:=[1, 3, 5, 6]; [n le 4 select I[n] else 3*Self(n-1)-4*Self(n-2)+3*Self(n-3)-Self(n-4): n in [1..100]]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved
Coefficient table for sums of Chebyshev's S-Polynomials.
+10
4
1, 1, 1, 0, 1, 1, 0, -1, 1, 1, 1, -1, -2, 1, 1, 1, 2, -2, -3, 1, 1, 0, 2, 4, -3, -4, 1, 1, 0, -2, 4, 7, -4, -5, 1, 1, 1, -2, -6, 7, 11, -5, -6, 1, 1, 1, 3, -6, -13, 11, 16, -6, -7, 1, 1, 0, 3, 9, -13, -24, 16, 22, -7, -8, 1, 1, 0, -3, 9, 22, -24, -40, 22, 29, -8, -9, 1, 1, 1, -3, -12, 22, 46, -40, -62, 29, 37, -9, -10, 1, 1, 1, 4, -12
OFFSET
0,13
COMMENTS
See A049310 for the coefficient table of Chebyshev's S(n,x)=U(n,x/2) polynomials.
This is a 'repetition triangle' based on a signed version of triangle A059260: a(2*p,2*k) = a(2*p+1,2*k) = A059260(p+k,2*k)*(-1)^(p+k) and a(2*p+1,2*k+1) = a(2*p+2,2*k+1) = A059260(p+k+1,2*k+1)*(-1)^(p+k), k >= 0.
LINKS
Wolfdieter Lang, First 15 rows
Per Alexandersson, Luis Angel González-Serrano, and Egor A. Maximenko, Mario Alberto Moctezuma-Salazar, Symmetric polynomials in the symplectic alphabet and their expression via Dickson-Zhukovsky variables, arXiv:1912.12725 [math.CO], 2019.
Per Alexandersson, Luis Angel González-Serrano, Egor A. Maximenko, and Mario Alberto Moctezuma-Salazar, Symmetric Polynomials in the Symplectic Alphabet and the Change of Variables z_j = x_j + x_j^(-1), The Elec. J. of Combinatorics (2021) Vol. 28, No. 1, #P1.56.
FORMULA
S(1;n,x) = Sum_{k=0..n} S(k,x) = Sum_{m=0..n} a(n,m)*x^m, n >= 0.
a(n,m) = [x^m](S(n,y)*S(n+1,y)/y) with y:=sqrt(2+x).
G.f. for column m: (x^m)/((1-x)*(1+x^2)^(m+1)), which shows that this is a lower diagonal matrix of the Riordan type, named (1/((1+x^2)*(1-x)), x/(1+x^2)).
From Wolfdieter Lang, Oct 16 2012: (Start)
a(n,m) = [x^m](1- (S(n+1,x) - S(n,x)))/(2-x). From the Binet - de Moivre formula for S and use of the geometric sum.
a(n,m) = [x^m](1- R(2*n+3,sqrt(2+x))/sqrt(2+x))/(2-x) with the monic integer T-polynomials R with coefficient triangle given in A127672. From the odd part of the bisection of the T-polynomials. (End)
EXAMPLE
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 1 1
2: 0 1 1
3: 0 -1 1 1
4: 1 -1 -2 1 1
5: 1 2 -2 -3 1 1
6: 0 2 4 -3 -4 1 1
7: 0 -2 4 7 -4 -5 1 1
8: 1 -2 -6 7 11 -5 -6 1 1
9: 1 3 -6 -13 11 16 -6 -7 1 1
10: 0 3 9 -13 -24 16 22 -7 -8 1 1
... reformatted by Wolfdieter Lang, Oct 16 2012
Row polynomial S(1;4,x) = 1 - x - 2*x^2 + x^3 + x^4 = Sum_{k=0..4} S(k,x).
S(4,y)*S(5,y)/y = 3 - 13*y^2 + 16*y^4 - 7*y^6 + y^8, with y=sqrt(2+x) this becomes S(1;4,x).
From Wolfdieter Lang, Oct 16 2012: (Start)
S(1;4,x) = (1 - (S(5,x) - S(4,x)))/(2-x) = (1-x)*(2-x)*(1+x)*(1-x-x^2)/(2-x) = (1-x)*(1+x)*(1-x-x^2).
S(5,x) - S(4,x) = R(11,sqrt(2+x))/sqrt(2+x) = -1 + 3*x + 3*x^2 - 4*x^3 - x^4 + x^5. (End)
CROSSREFS
Row sums (signed): A021823(n+2). Row sums (unsigned): A070550(n).
Cf. A128495 for S(2; n, x) coefficient table.
The column sequences (unsigned) are, for m=0..4: A021923, A002265, A008642, A128498, A128499.
For m >= 1 the column sequences (without leading zeros) are of the form a(m, 2*k) = a(m, 2*k+1) = ((-1)^k)*b(m, k) with the sequences b(m, k), given for m=1..11 by A008619, A002620, A002623, A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808.
KEYWORD
sign,tabl,easy
AUTHOR
Wolfdieter Lang, Apr 04 2007
STATUS
approved
Numbers k such that (10^k - 1)/3 + 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
+10
2
3, 5, 35, 159, 237, 325, 355, 371, 481, 1649, 3641, 4709, 269623
OFFSET
1,1
COMMENTS
Prime versus probable prime status and proofs are given in the author's table.
a(13) > 2*10^5. - Robert Price, Apr 03 2016
REFERENCES
C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
FORMULA
a(n) = 2*A183175(n) + 1.
EXAMPLE
5 is a term because (10^5 - 1)/3 + 2*10^2 = 33533.
MATHEMATICA
Do[ If[ PrimeQ[(10^n + 6*10^Floor[n/2] - 1)/3], Print[n]], {n, 3, 4800, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
KEYWORD
more,nonn,base
AUTHOR
Patrick De Geest, Nov 16 2002
EXTENSIONS
Name corrected by Jon E. Schoenfield, Oct 31 2018
a(13) from Robert Price, Aug 03 2024
STATUS
approved
Expansion of 1/(1-3*x-3*x^2-2*x^3).
+10
2
1, 3, 12, 47, 183, 714, 2785, 10863, 42372, 165275, 644667, 2514570, 9808261, 38257827, 149227404, 582072215, 2270414511, 8855914986, 34543132921, 134737972743, 525555146964, 2049965624963, 7996038261267, 31189121952618, 121655411891581, 474525678055131
OFFSET
0,2
FORMULA
G.f.: 1/(1-3*x-3*x^2-2*x^3).
a(n) = 3*a(n-1) + 3*a(n-2) + 2*a(n-3). - Wesley Ivan Hurt, Jan 20 2024
MATHEMATICA
CoefficientList[Series[1/(1 - 3*x - 3*x^2 - 2*x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jan 20 2024 *)
LinearRecurrence[{3, 3, 2}, {1, 3, 12}, 30] (* Harvey P. Dale, Dec 20 2024 *)
PROG
(PARI) Vec(1/(1-3*x-3*x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
CROSSREFS
Partial sums of S(n, x), for x=1...14, A021823, A000217, A027941, A061278, A089817, A053142, A092521, A076765, A092420, A097784, A097826-A097828, A076139.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved
Expansion of (1-x)^(-1)/(1-2*x-3*x^2-2*x^3).
+10
1
1, 3, 10, 32, 101, 319, 1006, 3172, 10001, 31531, 99410, 313416, 988125, 3115319, 9821846, 30965900, 97627977, 307797347, 970410426, 3059468848, 9645763669, 30410754735, 95877738174, 302279267892, 953013259777, 3004619799579, 9472837914274, 29865561746840
OFFSET
0,2
FORMULA
From Wesley Ivan Hurt, Jun 26 2022: (Start)
G.f.: (1-x)^(-1)/(1-2*x-3*x^2-2*x^3).
a(n) = 3*a(n-1) + a(n-2) - a(n-3) - 2*a(n-4). (End)
MATHEMATICA
LinearRecurrence[{3, 1, -1, -2}, {1, 3, 10, 32}, 30] (* Harvey P. Dale, May 12 2024 *)
PROG
(PARI) Vec((1-x)^(-1)/(1-2*x-3*x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
CROSSREFS
Partial sums of S(n, x), for x=1...10, A021823, A000217, A027941, A061278, A089817, A053142, A092521, A076765, A092420, A097784.
Partial sums of A077833.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved
Expansion of (1-x)^(-1)/(1-2*x-2*x^2-2*x^3).
+10
1
1, 3, 9, 27, 79, 231, 675, 1971, 5755, 16803, 49059, 143235, 418195, 1220979, 3564819, 10407987, 30387571, 88720755, 259032627, 756281907, 2208070579, 6446770227, 18822245427, 54954172467, 160446376243, 468445588275, 1367692273971, 3993168476979, 11658612678451
OFFSET
0,2
MATHEMATICA
CoefficientList[Series[(1-x)^(-1)/(1-2x-2x^2-2x^3), {x, 0, 40}], x] (* Harvey P. Dale, Mar 27 2011 *)
PROG
(PARI) Vec((1-x)^(-1)/(1-2*x-2*x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
CROSSREFS
Partial sums of S(n, x), for x=1...11, A021823, A000217, A027941, A061278, A089817, A053142, A092521, A076765, A092420, A097784, A097826.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002, Jun 05 2007
STATUS
approved

Search completed in 0.013 seconds