Displaying 1-10 of 24 results found.
Triangle of partition numbers: T(n,k) = number of partitions of n in which the greatest part is k, 1 <= k <= n. Also number of partitions of n into k positive parts, 1 <= k <= n.
+10
536
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 4, 7, 6, 5, 3, 2, 1, 1, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 1, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 1, 6, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 1, 6, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1, 1, 7, 16, 23, 23, 20, 15, 11, 7, 5, 3, 2, 1, 1
COMMENTS
From Frederik Beaujean (beaujean(AT)mpp.mpg.de), Apr 09 2010: (Start)
A000041(n+1) = 1 + Sum_{r=1..n} Sum_{k=1..min(r,n-r+1)} T(r,k).
T(n, n-k) is also the number of partitions of k in which the greatest part is at most n-k. (End)
Elements of T(n, k) for n <= 2+3k, equal A000041(n-k) - A000070(n-2k-1), with the assumption A000070(n) = 0 for n < 0.
The diagonal T(2+2k, k), for k > 1 equals A007042, and the diagonal T(3+3k,k), for k >= 1, equals A104384. (End)
T(-n, k) is used as a definition for A380038, which can therefore be seen as an extension of this sequence for negative n. - Friedjof Tellkamp, Jan 18 2025
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 94, 96 and 307.
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 219.
D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3: Generating All Combinations and Partitions, Addison-Wesley Professional, 2005, pp. 38, 45, 50 [From Frederik Beaujean (beaujean(AT)mpp.mpg.de), Apr 09 2010]
D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.4, p. 400.
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIV.2, p. 493.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 831. [scanned copy]
FORMULA
T(n, k) = Sum_{i=1..k} T(n-k, i), for 1 <= k <= n-1; T(n, n) = 1 for n >= 1.
Or, T(n, 1) = T(n, n) = 1, T(n, k) = 0 (k > n), T(n, k) = T(n-1, k-1) + T(n-k, k).
G.f. for k-th column: x^k/(Product_{j=1..k} (1-x^j)). - Wolfdieter Lang, Nov 29 2000
G.f.: A(x, y) = Product_{n>=1} 1/(1-x^n)^(P_n(y)/n), where P_n(y) = Sum_{d|n} eulerphi(n/d)*y^d. - Paul D. Hanna, Jul 13 2004
G.f.: G(t,x) = -1 + 1/Product_{j>=1} (1-t*x^j). - Emeric Deutsch, Feb 12 2006
G.f.: -1 + e^(F(x,z)), where F(x,z) = Sum_{n >= 1} (x*z)^n/(n*(1 - z^n)) is a g.f. for A126988. - Peter Bala, Jan 13 2015
Also, T(n, n-k) = k for k = 1, 2, 3; n >= 2k. T(n, 2) = floor(n/2). T(n, 3) = round(n^2/12). - M. F. Hasler, Sep 26 2017
T(n,k) = [n>0 & k>0] * (T(n-1,k-1) + T(n-k,k)) + [n==0 & k==0]. - Robert A. Russell, May 12 2018 from Knuth 7.2.1.4 (39)
T(n, k) = Sum_{i=0..n-1} T(n-ik-1, k-1) for k >= 1; T(-n, k) = 0 for n > 0; T(n, 0) = [n==0]. - Joshua Swanson (writing for Juexian Li), May 24 2020
EXAMPLE
The triangle T(n,k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 11 12 ...
1: 1
2: 1 1
3: 1 1 1
4: 1 2 1 1
5: 1 2 2 1 1
6: 1 3 3 2 1 1
7: 1 3 4 3 2 1 1
8: 1 4 5 5 3 2 1 1
9: 1 4 7 6 5 3 2 1 1
10: 1 5 8 9 7 5 3 2 1 1
11: 1 5 10 11 10 7 5 3 2 1 1
12: 1 6 12 15 13 11 7 5 3 2 1 1
T(7,3) = 4 because we have [3,3,1], [3,2,2], [3,2,1,1] and [3,1,1,1,1], each having greatest part 3; or [5,1,1], [4,2,1], [3,3,1] and [3,2,2] each having 3 parts.
* Example from formula above: T(10,4) = 9 because T(6,4) + T(6,3) + T(6,2) + T(6,1) = 2 + 3 + 3 + 1 = 9.
* P(n) = P(n-1) + DT(n-1). P(n) = unordered partitions of n. ( A000041) DT(n-1) = sum of diagonals beginning at T(n-1,1).
Example P(11) = 56, P(10) = 42, sum DT(10) = 1 + 4 + 5 + 3 + 1 = 14. - Bob Selcoe, Jun 09 2013
Illustration of initial terms: T(n,k) is also the number of vertical line segments in the k-th column of the n-th diagram, which represents the partitions of n:
.
1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 1 3 3 2 1 1 1 3 4 3 2 1 1
.
_| _| | _| | | _| | | | _| | | | | _| | | | | | _| | | | | | |
_ _| _ _| | _ _| | | _ _| | | | _ _| | | | | _ _| | | | | |
_ _ _| _ _ _| | _ _ _| | | _ _ _| | | | _ _ _| | | | |
_ _| | _ _| | | _ _| | | | _ _| | | | |
_ _ _ _| _ _ _ _| | _ _ _ _| | | _ _ _ _| | | |
_ _ _| | _ _ _| | | _ _ _| | | |
_ _ _ _ _| _ _ _ _ _| | _ _ _ _ _| | |
_ _| | | _ _| | | |
_ _ _ _| | _ _ _ _| | |
_ _ _| | _ _ _| | |
_ _ _ _ _ _| _ _ _ _ _ _| |
_ _ _| | |
_ _ _ _ _| |
_ _ _ _| |
_ _ _ _ _ _ _|
(End)
MAPLE
G:=-1+1/product(1-t*x^j, j=1..15): Gser:=simplify(series(G, x=0, 17)): for n from 1 to 14 do P[n]:=coeff(Gser, x^n) od: for n from 1 to 14 do seq(coeff(P[n], t^j), j=1..n) od; # yields sequence in triangular form; Emeric Deutsch, Feb 12 2006
with(combstruct):for n from 0 to 18 do seq(count(Partition(n), size=m), m = 1 .. n) od; # Zerinvary Lajos, Mar 30 2009
T := proc(n, k) option remember; if k < 0 or n < 0 then 0 elif k = 0 then if n = 0 then 1 else 0 fi else T(n - 1, k - 1) + T(n - k, k) fi end: seq(print(seq(T(n, k), k=1..n)), n=1..14); # Peter Luschny, Jul 24 2011
MATHEMATICA
Column[Table[ IntegerPartitions[n, {k}] // Length, {n, 1, 20}, {k, 1, n}], Center] (* Frederik Beaujean (beaujean(AT)mpp.mpg.de), Apr 09 2010 *)
(*Recurrence closely related to natural numbers and number of divisors of n*)
Clear[t]; nn = 14; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, n - 1}] - Sum[t[n - i, k], {i, 1, k - 1}], 0]; Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 1, nn}]][[1 ;; 96]] (* Mats Granvik, Jan 01 2015 *)
Table[SeriesCoefficient[1/QPochhammer[a q, q], {q, 0, n}, {a, 0, k}], {n, 1, 15}, {k, 1, n}] // Column (* Vladimir Reshetnikov, Nov 18 2016 *)
T[n_, k_] := T[n, k] = If[n>0 && k>0, T[n-1, k-1] + T[n-k, k], Boole[n==0 && k==0]]
Table[T[n, k], {n, 1, 20}, {k, 1, n}] // Flatten (* Robert A. Russell, May 12 2018 after Knuth 7.2.1.4 (39) *)
PROG
(Haskell)
a008284 n k = a008284_tabl !! (n-1) !! (k-1)
a008284_row n = a008284_tabl !! (n-1)
a008284_tabl = [1] : f [[1]] where
f xss = ys : f (ys : xss) where
ys = (map sum $ zipWith take [1..] xss) ++ [1]
(Sage)
from sage.combinat.partition import number_of_partitions_length
[[number_of_partitions_length(n, k) for k in (1..n)] for n in (1..12)] # Peter Luschny, Aug 01 2015
(PARI) T(n, k)=#partitions(n-k, k)
(PARI) A8284=[]; A008284(n, k)={for(n=#A8284+1, n, A8284=concat(A8284, [vector(n, k, if(2*k<n, if(k>1, A8284[n-k][k]+A8284[n-1][k-1], 1), numbpart(n-k)))])); if(k, A8284[n][k], A8284[n])} \\ Without 2nd argument, return row n. - M. F. Hasler, Sep 26 2017
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
if k==n or k==1: return 1
if k>n: return 0
CROSSREFS
Partial sums of rows gives A026820.
Read from right to left gives A058398.
Subtriangle of A072233 without row n=0 and column m=0.
a(n) is the number of partitions of n into at most 3 parts; also partitions of n+3 in which the greatest part is 3; also number of unlabeled multigraphs with 3 nodes and n edges.
(Formerly M0518 N0186)
+10
196
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341
COMMENTS
Also number of tripods (trees with exactly 3 leaves) on n vertices. - Eric W. Weisstein, Mar 05 2011
Also number of partitions of n+3 into exactly 3 parts; number of partitions of n in which the greatest part is less than or equal to 3; and the number of nonnegative solutions to b + 2c + 3d = n.
Also a(n) gives number of partitions of n+6 into 3 distinct parts and number of partitions of 2n+9 into 3 distinct and odd parts, e.g., 15 = 11 + 3 + 1 = 9 + 5 + 1 = 7 + 5 + 3. - Jon Perry, Jan 07 2004
Also bracelets with n+3 beads 3 of which are red (so there are 2 possibilities with 5 beads).
More generally, the number of partitions of n into at most k parts is also the number of partitions of n+k into k positive parts, the number of partitions of n+k in which the greatest part is k, the number of partitions of n in which the greatest part is less than or equal to k, the number of partitions of n+k(k+1)/2 into exactly k distinct positive parts, the number of nonnegative solutions to b + 2c + 3d + ... + kz = n and the number of nonnegative solutions to 2c + 3d + ... + kz <= n. - Henry Bottomley, Apr 17 2001
Also coefficient of q^n in the expansion of (m choose 3)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
From Winston C. Yang (winston(AT)cs.wisc.edu), Apr 30 2002: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) for n > 0 is formed by the folding points (including the initial 1). The spiral begins:
.
85--84--83--82--81--80
/ \
86 56--55--54--53--52 79
/ / \ \
87 57 33--32--31--30 51 78
/ / / \ \ \
88 58 34 16--15--14 29 50 77
/ / / / \ \ \ \
89 59 35 17 5---4 13 28 49 76
/ / / / / \ \ \ \ \
90 60 36 18 6 0 3 12 27 48 75
/ / / / / / / / / / /
91 61 37 19 7 1---2 11 26 47 74
\ \ \ \ / / / /
62 38 20 8---9--10 25 46 73
\ \ \ / / /
63 39 21--22--23--24 45 72
\ \ / /
64 40--41--42--43--44 71
\ /
65--66--67--68--69--70
.
a(p) is maximal number of hexagons in a polyhex with perimeter at most 2p + 6. (End)
a(n-3) is the number of partitions of n into 3 distinct parts, where 0 is allowed as a part. E.g., at n=9, we can write 8+1+0, 7+2+0, 6+3+0, 4+5+0, 1+2+6, 1+3+5 and 2+3+4, which is a(6)=7. - Jon Perry, Jul 08 2003
a(n) gives number of partitions of n+6 into parts <=3 where each part is used at least once (subtract 6=1+2+3 from n). - Jon Perry, Jul 03 2004
This is also the number of partitions of n+3 into exactly 3 parts (there is a 1-to-1 correspondence between the number of partitions of n+3 in which the greatest part is 3 and the number of partitions of n+3 into exactly three parts). - Graeme McRae, Feb 07 2005
Apply the Riordan array (1/(1-x^3),x) to floor((n+2)/2). - Paul Barry, Apr 16 2005
Also, number of triangles that can be created with odd perimeter 3,5,7,9,11,... with all sides whole numbers. Note that triangles with even perimeter can be generated from the odd ones by increasing each side by 1. E.g., a(1) = 1 because perimeter 3 can make {1,1,1} 1 triangle. a(4) = 3 because perimeter 9 can make {1,4,4} {2,3,4} {3,3,3} 3 possible triangles. - Bruce Love (bruce_love(AT)ofs.edu.sg), Nov 20 2006
Also number of nonnegative solutions of the Diophantine equation x+2*y+3*z=n, cf. Pólya/Szegő reference.
Also a(n-3), n >= 3, is the number of non-equivalent necklaces of 3 beads each of them painted by one of n colors.
The sequence {a(n-3), n >= 3} solves the so-called Reis problem about convex k-gons in case k=3 (see our comment to A032279).
a(n-3) (n >= 3) is an essentially unimprovable upper estimate for the number of distinct values of the permanent in (0,1)-circulants of order n with three 1's in every row. (End)
A001399(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and w = 2*x+3*y. - Clark Kimberling, Jun 04 2012
Also, for n >= 3, a(n-3) is the number of the distinct triangles in an n-gon, see the Ngaokrajang links. - Kival Ngaokrajang, Mar 16 2013
Also, a(n) is the total number of 5-curve coin patterns (5C4S type: 5 curves covering full 4 coins and symmetry) packing into fountain of coins base (n+3). See illustration in links. - Kival Ngaokrajang, Oct 16 2013
Also a(n) = half the number of minimal zero sequences for Z_n of length 3 [Ponomarenko]. - N. J. A. Sloane, Feb 25 2014
Also, a(n) equals the number of linearly-independent terms at 2n-th order in the power series expansion of an Octahedral Rotational Energy Surface (cf. Harter & Patterson). - Bradley Klee, Jul 31 2015
Also Molien series for invariants of finite Coxeter groups D_3 and A_3. - N. J. A. Sloane, Jan 10 2016
Number of different distributions of n+6 identical balls in 3 boxes as x,y,z where 0 < x < y < z. - Ece Uslu and Esin Becenen, Jan 11 2016
a(n) is also the number of partitions of 2*n with <= n parts and no part >= 4. The bijection to partitions of n with no part >= 4 is: 1 <-> 2, 2 <-> 1 + 3, 3 <-> 3 + 3 (observing the order of these rules). The <- direction uses the following fact for partitions of 2*n with <= n parts and no part >=4: for each part 1 there is a part 3, and an even number (including 0) of remaining parts 3. - Wolfdieter Lang, May 21 2019
List of the terms in A000567(n>=1), A049450(n>=1), A033428(n>=1), A049451(n>=1), A045944(n>=1), and A003215(n) in nondecreasing order. List of the numbers A056105(n)-1, A056106(n)-1, A056107(n)-1, A056108(n)-1, A056109(n)-1, and A003215(m) with n >= 1 and m >= 0 in nondecreasing order. Numbers of the forms 3n*(n-1)+1, n*(3n-2), n*(3n-1), 3n^2, n*(3n+1), n*(3n+2) with n >= 1 listed in nondecreasing order. Integers m such that lattice points from 1 through m on a hexagonal spiral starting at 1 forms a convex polygon. - Ya-Ping Lu, Jan 24 2024
REFERENCES
R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter III, Problem 33.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 110, D(n); page 263, #18, P_n^{3}.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.
R. Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39.
J. H. van Lint, Combinatorial Seminar Eindhoven, Lecture Notes Math., 382 (1974), see pp. 33-34.
G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 1, Sect. 1, Problem 25.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. J. Cyvin, B. N. Cyvin, J. Brunvoll, I. Gutman, Chen Rong-si, S. El-Basil, and Zhang Fuji, Polygonal Systems Including the Corannulene and Coronene Homologs: Novel Applications of Pólya's Theorem, Z. Naturforsch., 52a (1997), 867-873.
Eric Weisstein's World of Mathematics, Tripod.
FORMULA
G.f.: 1/((1 - x) * (1 - x^2) * (1 - x^3)) = -1/((x+1)*(x^2+x+1)*(x-1)^3); Simon Plouffe in his 1992 dissertation
a(n) = round((n + 3)^2/12). Note that this cannot be of the form (2*i + 1)/2, so ties never arise.
a(n) = 1 + a(n-2) + a(n-3) - a(n-5) for all n in Z. - Michael Somos, Sep 04 2006
P(n, 3) = (1/72) * (6*n^2 - 7 - 9*pcr{1, -1}(2, n) + 8*pcr{2, -1, -1}(3, n)) (see Comtet). [Here "pcr" stands for "prime circulator" and it is defined on p. 109 of Comtet, while the formula appears on p. 110. - Petros Hadjicostas, Oct 03 2019]
Let m > 0 and -3 <= p <= 2 be defined by n = 6*m+p-3; then for n > -3, a(n) = 3*m^2 + p*m, and for n = -3, a(n) = 3*m^2 + p*m + 1. - Floor van Lamoen, Jul 23 2001
a(n) = 6*t(floor(n/6)) + (n%6) * (floor(n/6) + 1) + (n mod 6 == 0?1:0), where t(n) = n*(n+1)/2.
a(n) = ceiling(1/12*n^2 + 1/2*n) + (n mod 6 == 0?1:0).
[Here "n%6" means "n mod 6" while "(n mod 6 == 0?1:0)" means "if n mod 6 == 0 then 1, else 0" (as in C).]
(End)
a(n) = Sum_{i=0..floor(n/3)} 1 + floor((n - 3*i)/2). - Jon Perry, Jun 27 2003
a(n) = Sum_{k=0..n} floor((k + 2)/2) * (cos(2*Pi*(n - k)/3 + Pi/3)/3 + sqrt(3) * sin(2*Pi*(n-k)/3 + Pi/3)/3 + 1/3). - Paul Barry, Apr 16 2005
(m choose 3)_q = (q^m-1) * (q^(m-1) - 1) * (q^(m-2) - 1)/((q^3 - 1) * (q^2 - 1) * (q - 1)).
a(n) = Sum_{k=0..floor(n/2)} floor((3 + n - 2*k)/3). - Paul Barry, Nov 11 2003
a(n) = 3 * Sum_{i=2..n+1} floor(i/2) - floor(i/3). - Thomas Wieder, Feb 11 2007
Identical to the number of points inside or on the boundary of the integer grid of {I, J}, bounded by the three straight lines I = 0, I - J = 0 and I + 2J = n. - Jonathan Vos Post, Jul 03 2007
Euler transform of length 3 sequence [ 1, 1, 1]. - Michael Somos, Feb 25 2012
Let p(n, 3) be the number of 3-part integer partitions in which every part is > 0.
Then for n >= 3, p(n, 3) is equal to:
(n^2 - 1)/12 when n is odd and 3 does not divide n.
(n^2 + 3)/12 when n is odd and 3 divides n.
(n^2 - 4)/12 when n is even and 3 does not divide n.
(n^2)/12 when n is even and 3 divides n.
For n >= 3, p(n, 3) = a(n-3). (End)
Sum_{n>=0} 1/a(n) = 15/4 - Pi/(2*sqrt(3)) + Pi^2/18 + tanh(Pi/(2*sqrt(3)))*Pi/sqrt(3). - Amiram Eldar, Sep 29 2022
E.g.f.: exp(-x)*(9 + exp(2*x)*(47 + 42*x + 6*x^2) + 16*exp(x/2)*cos(sqrt(3)*x/2))/72. - Stefano Spezia, Mar 05 2023
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 7*x^6 + 8*x^7 + 10*x^8 + 12*x^9 + ...
Recall that in a necklace the adjacent beads have distinct colors. Suppose we have n colors with labels 1,...,n. Two colorings of the beads are equivalent if the cyclic sequences of the distances modulo n between labels of adjacent colors have the same period. If n=4, all colorings are equivalent. E.g., for the colorings {1,2,3} and {1,2,4} we have the same period {1,1,2} of distances modulo 4. So, a(n-3)=a(1)=1. If n=5, then we have two such periods {1,1,3} and {1,2,2} modulo 5. Thus a(2)=2. - Vladimir Shevelev, Apr 23 2011
a(0) = 1, i.e., {1,2,3} Number of different distributions of 6 identical balls to 3 boxes as x,y and z where 0 < x < y < z. - Ece Uslu, Esin Becenen, Jan 11 2016
a(3) = 3, i.e., {1,2,6}, {1,3,5}, {2,3,4} Number of different distributions of 9 identical balls in 3 boxes as x,y and z where 0 < x < y < z. - Ece Uslu, Esin Becenen, Jan 11 2016
The a(0) = 1 through a(8) = 10 integer partitions of n with at most three parts are the following. The Heinz numbers of these partitions are given by A037144.
() (1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(311) (222) (322) (71)
(321) (331) (332)
(411) (421) (422)
(511) (431)
(521)
(611)
The a(0) = 1 through a(7) = 8 integer partitions of n + 3 whose greatest part is 3 are the following. The Heinz numbers of these partitions are given by A080193.
(3) (31) (32) (33) (322) (332) (333) (3322)
(311) (321) (331) (3221) (3222) (3331)
(3111) (3211) (3311) (3321) (32221)
(31111) (32111) (32211) (33211)
(311111) (33111) (322111)
(321111) (331111)
(3111111) (3211111)
(31111111)
Non-isomorphic representatives of the a(0) = 1 through a(5) = 5 unlabeled multigraphs with 3 vertices and n edges are the following.
{} {12} {12,12} {12,12,12} {12,12,12,12} {12,12,12,12,12}
{13,23} {12,13,23} {12,13,23,23} {12,13,13,23,23}
{13,23,23} {13,13,23,23} {12,13,23,23,23}
{13,23,23,23} {13,13,23,23,23}
{13,23,23,23,23}
The a(0) = 1 through a(8) = 10 strict integer partitions of n - 6 with three parts are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A007304.
(321) (421) (431) (432) (532) (542) (543) (643) (653)
(521) (531) (541) (632) (642) (652) (743)
(621) (631) (641) (651) (742) (752)
(721) (731) (732) (751) (761)
(821) (741) (832) (842)
(831) (841) (851)
(921) (931) (932)
(A21) (941)
(A31)
(B21)
The a(0) = 1 through a(8) = 10 integer partitions of n + 3 with three parts are the following. The Heinz numbers of these partitions are given by A014612.
(111) (211) (221) (222) (322) (332) (333) (433) (443)
(311) (321) (331) (422) (432) (442) (533)
(411) (421) (431) (441) (532) (542)
(511) (521) (522) (541) (551)
(611) (531) (622) (632)
(621) (631) (641)
(711) (721) (722)
(811) (731)
(821)
(911)
The a(0) = 1 through a(8) = 10 integer partitions of n whose greatest part is <= 3 are the following. The Heinz numbers of these partitions are given by A051037.
() (1) (2) (3) (22) (32) (33) (322) (332)
(11) (21) (31) (221) (222) (331) (2222)
(111) (211) (311) (321) (2221) (3221)
(1111) (2111) (2211) (3211) (3311)
(11111) (3111) (22111) (22211)
(21111) (31111) (32111)
(111111) (211111) (221111)
(1111111) (311111)
(2111111)
(11111111)
The a(0) = 1 through a(6) = 7 strict integer partitions of 2n+9 with 3 parts, all of which are odd, are the following. The Heinz numbers of these partitions are given by A307534.
(5,3,1) (7,3,1) (7,5,1) (7,5,3) (9,5,3) (9,7,3) (9,7,5)
(9,3,1) (9,5,1) (9,7,1) (11,5,3) (11,7,3)
(11,3,1) (11,5,1) (11,7,1) (11,9,1)
(13,3,1) (13,5,1) (13,5,3)
(15,3,1) (13,7,1)
(15,5,1)
(17,3,1)
The a(0) = 1 through a(8) = 10 strict integer partitions of n + 3 with 3 parts where 0 is allowed as a part (A = 10):
(210) (310) (320) (420) (430) (530) (540) (640) (650)
(410) (510) (520) (620) (630) (730) (740)
(321) (610) (710) (720) (820) (830)
(421) (431) (810) (910) (920)
(521) (432) (532) (A10)
(531) (541) (542)
(621) (631) (632)
(721) (641)
(731)
(821)
The a(0) = 1 through a(7) = 7 integer partitions of n + 6 whose distinct parts are 1, 2, and 3 are the following. The Heinz numbers of these partitions are given by A143207.
(321) (3211) (3221) (3321) (32221) (33221) (33321)
(32111) (32211) (33211) (322211) (322221)
(321111) (322111) (332111) (332211)
(3211111) (3221111) (3222111)
(32111111) (3321111)
(32211111)
(321111111)
(End)
Partitions of 2*n with <= n parts and no part >= 4: a(3) = 3 from (2^3), (1,2,3), (3^2) mapping to (1^3), (1,2), (3), the partitions of 3 with no part >= 4, respectively. - Wolfdieter Lang, May 21 2019
MAPLE
round( (n+3)^2/12) ;
end proc:
with(combstruct):ZL4:=[S, {S=Set(Cycle(Z, card<4))}, unlabeled]:seq(count(ZL4, size=n), n=0..61); # Zerinvary Lajos, Sep 24 2007
B:=[S, {S = Set(Sequence(Z, 1 <= card), card <=3)}, unlabelled]: seq(combstruct[count](B, size=n), n=0..61); # Zerinvary Lajos, Mar 21 2009
MATHEMATICA
CoefficientList[ Series[ 1/((1 - x)*(1 - x^2)*(1 - x^3)), {x, 0, 65} ], x ]
Table[ Length[ IntegerPartitions[n, 3]], {n, 0, 61} ] (* corrected by Jean-François Alcover, Aug 08 2012 *)
k = 3; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 1, 2, 3, 4, 5}, 70] (* Harvey P. Dale, Jun 21 2012 *)
a[ n_] := With[{m = Abs[n + 3] - 3}, Length[ IntegerPartitions[ m, 3]]]; (* Michael Somos, Dec 25 2014 *)
k=3 (* Number of red beads in bracelet problem *); CoefficientList[Series[(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2, {x, 0, 50}], x] (* Herbert Kociemba, Nov 04 2016 *)
Table[Length[Select[IntegerPartitions[n, {3}], UnsameQ@@#&]], {n, 0, 30}] (* Gus Wiseman, Apr 15 2019 *)
PROG
(PARI) {a(n) = round((n + 3)^2 / 12)}; /* Michael Somos, Sep 04 2006 */
(Haskell)
a001399 = p [1, 2, 3] where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
(Magma) I:=[1, 1, 2, 3, 4, 5]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..80]]; // Vincenzo Librandi, Feb 14 2015
(Magma) [#RestrictedPartitions(n, {1, 2, 3}): n in [0..62]]; // Marius A. Burtea, Jan 06 2019
(Python) [print(round((n+3)**2/12), end = ', ') for n in range(0, 62)] # Ya-Ping Lu, Jan 24 2024
CROSSREFS
Cf. A008724, A003082, A117485, A026810, A026811, A026812, A026813, A026814, A026815, A026816, A000228, A036496, A008619, A001400, A001401, A069905, A008615, row 3 of A192517.
Number of partitions of n in which the greatest part is 4.
+10
40
0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 34, 39, 47, 54, 64, 72, 84, 94, 108, 120, 136, 150, 169, 185, 206, 225, 249, 270, 297, 321, 351, 378, 411, 441, 478, 511, 551, 588, 632, 672, 720, 764, 816, 864, 920, 972, 1033, 1089, 1154, 1215, 1285, 1350
COMMENTS
Also number of partitions of n into exactly 4 parts.
Also the number of weighted cubic graphs on 4 nodes (=the tetrahedron) with weight n. - R. J. Mathar, Nov 03 2018
Also the number of strict integer partitions of 2n with alternating sum 4, or (by conjugation) partitions of 2n covering an initial interval of positive integers with exactly 4 odd parts. The strict partitions with alternating sum 4 are:
(4) (5,1) (6,2) (7,3) (8,4) (9,5) (10,6)
(5,2,1) (5,3,2) (5,4,3) (6,5,3) (7,6,3)
(6,3,1) (6,4,2) (7,5,2) (8,6,2)
(7,4,1) (8,5,1) (9,6,1)
(6,3,2,1) (6,4,3,1) (6,5,4,1)
(7,4,2,1) (7,4,3,2)
(7,5,3,1)
(8,5,2,1)
(6,4,3,2,1)
(End)
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.
D. E. Knuth, The Art of Computer Programming, vol. 4,fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-2,0,0,1,1,-1).
FORMULA
G.f.: x^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) = x^4/((1-x)^4*(1+x)^2*(1+x+x^2)*(1+x^2)).
a(n) = round( (n^3 + 3*n^2 -9*n*(n mod 2))/144 ). - Washington Bomfim, Jan 06 2021 and Jul 03 2012
a(n) = (n^3 + 3*n^2 - 9*n)/144 + a(m) - (m^3 + 3*m^2 - 9*m)/144 if n = 12k + m and m is odd. For example, a(23) = a(12*1 + 11) = (23^3 + 3*23^2 - 9*23)/144 + a(11) - (11^3 + 3*11^2 - 9*11)/144 = 94.
a(n) = (n^3 + 3*n^2)/144 + a(m) - (m^3 + 3*m^2)/144 if n = 12k + m and m is even. For example, a(22) = a(12*1 + 10) = (22^3 + 3*22^2)/144 + a(10) - (10^3 + 3*10^2)/144 = 84. (End)
a(2n+1) = a(2n) + a(n+1) - a(n-3) and
a(2n) = a(2n-1) + a(n+2) - a(n-2). (End)
EXAMPLE
The a(4) = 1 through a(10) = 9 partitions of length 4:
(1111) (2111) (2211) (2221) (2222) (3222) (3322)
(3111) (3211) (3221) (3321) (3331)
(4111) (3311) (4221) (4222)
(4211) (4311) (4321)
(5111) (5211) (4411)
(6111) (5221)
(5311)
(6211)
(7111)
(End)
MAPLE
op(1+(n mod 3), [1, -1, 0]) ;
end proc:
op(1+(n mod 4), [1, 0, -1, 0]) ;
end proc:
1/288*(n+1)*(2*n^2+4*n-13+9*(-1)^n) ;
MATHEMATICA
Table[Count[IntegerPartitions[n], {4, ___}], {n, 0, 60}]
LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {0, 0, 0, 0, 1, 1, 2, 3, 5, 6}, 60] (* Vincenzo Librandi, Oct 14 2015 *)
Table[Length[IntegerPartitions[n, {4}]], {n, 0, 60}] (* Eric Rowland, Mar 02 2017 *)
CoefficientList[Series[x^4/Product[1 - x^k, {k, 1, 4}], {x, 0, 60}], x] (* Robert A. Russell, May 13 2018 *)
PROG
(PARI) for(n=0, 60, print(n, " ", round((n^3 + 3*n^2 -9*n*(n % 2))/144))); \\ Washington Bomfim, Jul 03 2012
(PARI) x='x+O('x^60); concat([0, 0, 0, 0], Vec(x^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)))) \\ Altug Alkan, Oct 14 2015
(PARI) vector(60, n, n--; (n+1)*(2*n^2+4*n-13+9*(-1)^n)/288 + real(I^n)/8 - ((n+2)%3-1)/9) \\ Altug Alkan, Oct 26 2015
(PARI) print1(0, ", "); for(n=1, 60, j=0; forpart(v=n, j++, , [4, 4]); print1(j, ", ")) \\ Hugo Pfoertner, Oct 01 2018
(Magma) [Round((n^3+3*n^2-9*n*(n mod 2))/144): n in [0..60]]; // Vincenzo Librandi, Oct 14 2015
CROSSREFS
Cf. A000041, A000070, A000097, A067659, A103919, A120452, A236559, A239830, A306145, A343942, A344616, A344649, A344651.
Number of partitions of n into at most 5 parts.
(Formerly M0642 N0237)
+10
28
1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 84, 101, 119, 141, 164, 192, 221, 255, 291, 333, 377, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 1226, 1342, 1469, 1602, 1747, 1898, 2062, 2233, 2418, 2611, 2818, 3034, 3266, 3507, 3765, 4033, 4319
COMMENTS
a(n) = T_{r}(n) for r large, where T_{r}(n) = number of outcomes in which r indistinguishable dice yield a sum r+n-1.
a(n) = coefficient of q^n in the expansion of (m choose 5)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
Number of different distributions of n+15 identical balls in 5 boxes as x,y,z,p,q where 0 < x < y < z < p < q. - Ece Uslu and Esin Becenen, Jan 11 2016 [i.e., a(n) is the number of partitions of n+15 into 5 distinct parts. - R. J. Mathar, Feb 28 2021]
Tengely and Ulas prove that a(n) is a square only for n=1 and 2027. - Michel Marcus, Feb 11 2021
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115, row m=5 of Q(m,n) table.
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
D. E. Knuth, The Art of Computer Programming, vol. 4, fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,-1,-1,1,1,1,0,0,-1,-1,1).
FORMULA
G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)).
a(n) = 1 + (a(n-2) + a(n-3) + a(n-4)) - (a(n-6) + (2*a(n-7)) + a(n-8)) + (a(n-10) + a(n-11) + a(n-12)) - a(n-14). - Norman J. Meluch (norm(AT)iss.gm.com), Mar 09 2000
Let a1(n) = Sum_{i=0..floor(n/3)} (1 + ceiling((n-3*i-1)/2)), a2(n) = Sum_{i=0..floor(n/4)} (1 + ceiling((n-4*i-1)/2) + a1(n-4*i-3)), then a(n) = Sum_{i=0..floor(n/5)} (1 + ceiling((n-5*i-1)/2) + a1(n-5*i-3) + a2(n-5*i-4)). - Jon Perry, Jun 27 2003
(n choose 5)_q=(q^n-1)*(q^(n-1)-1)*(q^(n-2)-1)*(q^(n-3)-1)*(q^(n-4)-1)/((q^5-1)*(q^4-1)*(q^3-1)*(q^2-1)*(q-1)).
a(n) = round(((n+5)^4 + 10*((n+5)^3 + (n+5)^2) - 75*(n+5) - 45*(n+5)*(-1)^(n+5))/2880). - Washington Bomfim, Jul 03 2012
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-6) - a(n-7) + a(n-8) + a(n-9) + a(n-10) - a(n-13) - a(n-14) + a(n+15). - David Neil McGrath, Sep 13 2014
a(n) = Sum_{k=0..floor(n/5)} Sum_{j=0..floor(n/4)} Sum_{i=0..floor(n/3)} ceiling((max(0, n + 1 - 3*i - 4*j - 5*k))/2).
a(n) = Sum_{j=0..floor(n/5)} Sum_{i=0..floor(n/4)} floor(((max(0, n + 3 - 4*i - 5*j))^2+4)/12). (End)
EXAMPLE
(5 choose 5)_q = 1;
(6 choose 5)_q = q^5 + q^4 + q^3 + q^2 + q + 1;
(7 choose 5)_q = q^10 + q^9 + 2*q^8 + 2*q^7 + 3*q^6 + 3*q^5 + 3*q^4 + 2*q^3 + 2*q^2 + q + 1;
(8 choose 5)_q = q^15 + q^14 + 2*q^13 + 3*q^12 + 4*q^11 + 5*q^10 + 6*q^9 + 6*q^8 + 6*q^7 + 6*q^6 + 5*q^5 + 4*q^4 + 3*q^3 + 2*q^2 + q + 1;
so the coefficient of q^0 converges to 1, q^1 to 1, q^2 to 2 and so on.
a(3) = 3, i.e., {1,2,3,4,8}, {1,2,3,5,7}, {1,2,4,5,6}. Number of different distributions of 18 identical balls in 5 boxes as x,y,z,p,q where 0 < x < y < z < p < q. - Ece Uslu, Esin Becenen, Jan 11 2016
MAPLE
with(combstruct):ZL6:=[S, {S=Set(Cycle(Z, card<6))}, unlabeled]:seq(count(ZL6, size=n), n=0..52); # Zerinvary Lajos, Sep 24 2007
a:= n-> (Matrix(15, (i, j)-> if (i=j-1) then 1 elif j=1 then [1, 1, 0, 0, -1, -1, -1, 1, 1, 1, 0, 0, -1, -1, 1][i] else 0 fi)^n)[1, 1]: seq(a(n), n=0..60); # Alois P. Heinz, Jul 31 2008
B:=[S, {S = Set(Sequence(Z, 1 <= card), card <=5)}, unlabelled]: seq(combstruct[count](B, size=n), n=0..52); # Zerinvary Lajos, Mar 21 2009
MATHEMATICA
CoefficientList[ Series[ 1/((1 - x)*(1 - x^2)*(1 - x^3)*(1 - x^4)*(1 - x^5)), {x, 0, 60} ], x ]
a[n_] := IntegerPartitions[n, 5] // Length; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Jul 13 2012 *)
LinearRecurrence[{1, 1, 0, 0, -1, -1, -1, 1, 1, 1, 0, 0, -1, -1, 1}, {1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70}, 60] (* Harvey P. Dale, Jan 05 2019 *)
EXTENSIONS
Additional comments from Michael Somos and Branislav Kisacanin (branislav.kisacanin(AT)delphiauto.com)
Number of partitions of n in which the greatest part is 10.
+10
25
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 75, 97, 128, 164, 212, 267, 340, 423, 530, 653, 807, 984, 1204, 1455, 1761, 2112, 2534, 3015, 3590, 4242, 5013, 5888, 6912, 8070, 9418, 10936, 12690, 14663, 16928, 19466
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, -1, 1, 1, 1, 2, 0, 0, -1, -1, -1, -1, -3, 0, 0, 1, 1, 2, 2, 1, 1, 0, 0, -3, -1, -1, -1, -1, 0, 0, 2, 1, 1, 1, -1, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, -1).
FORMULA
G.f.: x^10 / (Product_{k=1..10} 1-x^k ). - Colin Barker, Feb 22 2013
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} 1. - Wesley Ivan Hurt, Jul 13 2019
MATHEMATICA
Table[ Length[ Select[ Partitions[n], First[ # ] == 10 & ]], {n, 1, 60} ]
CoefficientList[Series[x^10/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7) (1 - x^8) (1 - x^9) (1 - x^10)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
PROG
(GAP) List([0..70], n->NrPartitions(n, 10)); # Muniru A Asiru, May 17 2018
Number of partitions of n in which the greatest part is 7.
+10
24
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 38, 49, 65, 82, 105, 131, 164, 201, 248, 300, 364, 436, 522, 618, 733, 860, 1009, 1175, 1367, 1579, 1824, 2093, 2400, 2738, 3120, 3539, 4011, 4526, 5102, 5731, 6430, 7190, 8033, 8946, 9953, 11044, 12241
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,0,-1,-1,0,1,1,2,0,0,0,-2,-1,-1,0,1,1,0,1,0,0,-1,-1,1).
FORMULA
G.f.: x^7 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)). - Colin Barker, Feb 22 2013
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} 1. - Wesley Ivan Hurt, Jun 30 2019
MATHEMATICA
Table[ Length[ Select[ Partitions[n], First[ # ] == 7 & ]], {n, 1, 60} ]
CoefficientList[Series[x^7/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
Drop[LinearRecurrence[{1, 1, 0, 0, -1, 0, -1, -1, 0, 1, 1, 2, 0, 0, 0, -2, -1, -1, 0, 1, 1, 0, 1, 0, 0, -1, -1, 1}, Append[Table[0, {27}], 1], 121], 20] (* Robert A. Russell, May 17 2018 *)
PROG
(PARI) my(x='x+O('x^99)); concat(vector(7), Vec(x^7/prod(k=1, 7, 1-x^k))) \\ Altug Alkan, May 17 2018
(GAP) List([0..70], n->NrPartitions(n, 7)); # Muniru A Asiru, May 17 2018
Number of partitions of n in which the greatest part is 9.
+10
24
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 73, 94, 123, 157, 201, 252, 318, 393, 488, 598, 732, 887, 1076, 1291, 1549, 1845, 2194, 2592, 3060, 3589, 4206, 4904, 5708, 6615, 7657, 8824, 10156, 11648, 13338, 15224, 17354, 19720, 22380
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 2, 1, 1, 1, 0, -1, -1, -1, -2, -1, -1, 1, 1, 2, 1, 1, 1, 0, -1, -1, -1, -2, 0, 1, 0, 0, 1, 0, 1, 0, 0, -1, -1, 1).
FORMULA
G.f.: x^9 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)*(1-x^9)). - Colin Barker, Feb 22 2013
MAPLE
part_ZL:=[S, {S=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: seq(count(subs(r=9, part_ZL), size=m), m=1..50); # Zerinvary Lajos, Mar 09 2007
MATHEMATICA
Table[ Length[ Select[ Partitions[n], First[ # ] == 9 & ]], {n, 1, 60} ]
CoefficientList[Series[x^9/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7) (1 - x^8) (1 - x^9)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
Drop[LinearRecurrence[{1, 1, 0, 0, -1, 0, -1, 0, 0, -1, 0, 2, 1, 1, 1, 0, -1, -1, -1, -2, -1, -1, 1, 1, 2, 1, 1, 1, 0, -1, -1, -1, -2, 0, 1, 0, 0, 1, 0, 1, 0, 0, -1, -1, 1}, Append[Table[0, {44}], 1], 136], 35] (* Robert A. Russell, May 17 2018 *)
PROG
(PARI) x='x+O('x^99); concat(vector(9), Vec(x^9/prod(k=1, 9, 1-x^k))) \\ Altug Alkan, May 17 2018
(GAP) List([0..70], n->NrPartitions(n, 9)); # Muniru A Asiru, May 17 2018
Number of partitions of n in which the greatest part is 8.
+10
23
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 52, 70, 89, 116, 146, 186, 230, 288, 352, 434, 525, 638, 764, 919, 1090, 1297, 1527, 1801, 2104, 2462, 2857, 3319, 3828, 4417, 5066, 5812, 6630, 7564, 8588, 9749, 11018, 12450, 14012, 15765, 17674
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, -1, 0, 1, 2, 1, 0, 1, -1, -1, -2, -1, -1, 1, 0, 1, 2, 1, 0, -1, 0, -1, 0, -1, 0, 0, 1, 1, -1).
FORMULA
G.f.: x^8 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)). [ Colin Barker, Feb 22 2013]
a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} 1. - Wesley Ivan Hurt, Jul 04 2019
MATHEMATICA
CoefficientList[Series[x^8/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6) (1 - x^7) (1 - x^8)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
Table[Count[IntegerPartitions[n], _?(Max[#]==8&)], {n, 0, 55}] (* Harvey P. Dale, Dec 04 2022 *)
PROG
(PARI) x='x+O('x^99); concat(vector(8), Vec(x^8/prod(k=1, 8, 1-x^k))) \\ Altug Alkan, May 17 2018
(GAP) List([0..70], n->NrPartitions(n, 8)); # Muniru A Asiru, May 17 2018
EXTENSIONS
Two inoperative Mathematica programs deleted by Harvey P. Dale, Dec 04 2022
Number of partitions of n in which the greatest part is 6.
+10
16
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 58, 71, 90, 110, 136, 163, 199, 235, 282, 331, 391, 454, 532, 612, 709, 811, 931, 1057, 1206, 1360, 1540, 1729, 1945, 2172, 2432, 2702, 3009, 3331, 3692, 4070, 4494, 4935, 5427, 5942, 6510, 7104, 7760
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,0,-2,0,1,1,1,1,0,-2,0,-1,0,0,1,1,-1).
FORMULA
G.f.: x^6 / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)). - Colin Barker, Dec 20 2012
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} 1. - Wesley Ivan Hurt, Jun 29 2019
a(n) = round((1/86400)*n^5 + (1/3840)*n^4 + (19/12960)*n^3 - (n mod 2)*(1/384)*n^2 + (1/17280)*b(n mod 6)*n), where b(0)=96, b(1)=b(5)=-629, b(2)=b(4)=-224, and b(3)=-309. - Washington Bomfim and Jon E. Schoenfield, Jan 16 2021
MATHEMATICA
Table[ Length[ Select[ Partitions[n], First[ # ] == 6 & ]], {n, 1, 60} ]
CoefficientList[Series[x^6/((1 - x) (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5) (1 - x^6)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 18 2013 *)
Drop[LinearRecurrence[{1, 1, 0, 0, -1, 0, -2, 0, 1, 1, 1, 1, 0, -2, 0, -1, 0, 0, 1, 1, -1}, Append[Table[0, {20}], 1], 115], 14] (* Robert A. Russell, May 17 2018 *)
PROG
(PARI) my(x='x+O('x^99)); concat(vector(6), Vec(x^6/prod(k=1, 6, 1-x^k))) \\ Altug Alkan, May 17 2018
(PARI) a = vector(60, n, n--; round((n+11)*((6*n^4+249*n^3+2071*n^2 -4931*n+40621) /518400 +n\2*(n+10)/192+((n+1)\3+n\3*2)/54))); a = concat([0, 0, 0, 0, 0, 0], a) \\ Washington Bomfim, Jan 16 2021
(GAP) List([0..70], n->NrPartitions(n, 6)); # Muniru A Asiru, May 17 2018
Number of pentagons that can be formed with perimeter n. In other words, number of partitions of n into five parts such that the sum of any four is more than the fifth.
+10
11
0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 9, 14, 16, 23, 25, 35, 39, 52, 57, 74, 81, 103, 111, 139, 150, 184, 197, 239, 256, 306, 325, 385, 409, 480, 507, 590, 623, 719, 756, 867, 911, 1038, 1087, 1232, 1289, 1453, 1516, 1701, 1774, 1981, 2061, 2293
COMMENTS
I recently commented on A062890 that:
"Partition sets of n into four parts (sides) such that the sum of any three is more than the fourth do not uniquely define a quadrilateral, even if it is further constrained to be cyclic. This is because the order of adjacent sides is important. E.g. the partition set [1,1,2,2] for a perimeter n=6 can be reordered to generate two non-congruent cyclic quadrilaterals, [1,2,1,2] and [1,1,2,2], where the first is a rectangle and the second a kite."
This comment applies to all integer polygons (other than triangles) that are generated from a perimeter of length n. Not sure how best to correct for the above observation but my suggestion would be to change the definition of the present sequence to read:
"The number of cyclic integer pentagons differing only in circumradius that can be generated from an integer perimeter n." (End)
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 1, 1, 0, -1, 0, -1, -2, 0, 0, 0, 0, 2, 1, 0, 1, 0, -1, -1, 0, -1, 0, 1).
FORMULA
G.f.: x^5*(1-x^11)/((1-x)*(1-x^2)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^8)).
MATHEMATICA
CoefficientList[Series[x^5(1-x^11)/((1-x)(1-x^2)(1-x^4)(1-x^5)(1-x^6) (1-x^8)), {x, 0, 60}], x] (* Harvey P. Dale, Dec 16 2011 *)
Search completed in 0.024 seconds
|