[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a025295 -id:a025295
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers that are the sum of 3 nonzero squares in 4 or more ways.
+10
21
129, 134, 146, 153, 161, 171, 189, 194, 198, 201, 206, 209, 230, 234, 243, 246, 249, 251, 254, 257, 261, 266, 269, 270, 278, 281, 285, 290, 293, 294, 297, 299, 306, 314, 321, 326, 329, 339, 341, 342, 350, 353, 354, 362, 363, 365, 369, 371, 374, 378, 381, 386, 387, 389
OFFSET
1,1
KEYWORD
nonn
STATUS
approved
Numbers that are the sum of two positive cubes in at least four ways (all solutions).
+10
9
6963472309248, 12625136269928, 21131226514944, 26059452841000, 55707778473984, 74213505639000, 95773976104625, 101001090159424, 159380205560856, 169049812119552, 174396242861568, 188013752349696
OFFSET
1,1
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, D1.
LINKS
Uwe Hollerbach, Taxi, Taxi! [Original link, broken]
Uwe Hollerbach, Taxi, Taxi! [Replacement link to Wayback Machine]
Uwe Hollerbach, Taxi! Taxi! [Cached copy from Wayback Machine, html version of top page only]
D. W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. Integer Sequences, Vol. 2, 1999, #99.1.9.
KEYWORD
nonn
AUTHOR
David W. Wilson (revised Oct 15 1997)
EXTENSIONS
b-file extended by Ray Chandler, Jan 19 2009
STATUS
approved
Numbers that are the sum of 2 nonzero squares in 5 or more ways.
+10
5
5525, 8125, 8450, 9425, 10625, 11050, 12025, 12325, 13325, 14365, 14450, 15725, 16250, 17225, 17425, 18125, 18785, 18850, 19825, 21125, 21250, 22100, 22525, 23125, 23725, 24050, 24505, 24650, 25625, 25925, 26650, 26825, 27625, 28730, 28925, 29725
OFFSET
1,1
MATHEMATICA
nn = 30000; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i}]; Flatten[Position[t, _?(# >= 5 &)]] (* T. D. Noe, Apr 07 2011 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved
Numbers that are the sum of 2 distinct nonzero squares in 4 or more ways.
+10
5
1105, 1625, 1885, 2125, 2210, 2405, 2465, 2665, 3145, 3250, 3445, 3485, 3625, 3770, 3965, 4225, 4250, 4420, 4505, 4625, 4745, 4810, 4930, 5125, 5185, 5330, 5365, 5525, 5785, 5945, 6205, 6290, 6305, 6409, 6500, 6565, 6625, 6890, 6970, 7085, 7225, 7250
OFFSET
1,1
COMMENTS
Subsequence of A025295. But sequences A025295 and A025314 are different, A025295(346) = 31250 = 175^2 + 25^2 = 161^2 + 73^2 = 155^2 + 85^2 = 125^2 + 125^2 (not distinct squares) is not in A025314. - Vaclav Kotesovec, Feb 27 2016
Numbers in A025295 but not in A025314 are exactly those numbers of the form 2*p_1^(2*a_1)*p_2^(2*a_2)*...*p_m^(2*a_m)*q^6 where p_i are primes of the form 4k+3 and q is a prime of the form 4k+1. Thus 2*5^6 = 31250 is the smallest term in A025295 that is not in A025314. - Chai Wah Wu, Feb 27 2016
MATHEMATICA
nn = 7250; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i - 1}]; Flatten[Position[t, _?(# >= 4 &)]] (* T. D. Noe, Apr 07 2011 *)
KEYWORD
nonn
STATUS
approved

Search completed in 0.005 seconds