[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a010525 -id:a010525
     Sort: relevance | references | number | modified | created      Format: long | short | data
Egyptian fraction representation of sqrt(73) (A010525) using a greedy function.
+20
0
8, 2, 23, 1904, 3644794, 253138275595730, 299921681006149892361129426137, 319157637936684764321170119844052189479588993114762538993037, 104022456806315370788933277888878173955194511356798258776365960524644747879084195850803592853844837028709668458856157018
OFFSET
0,1
MATHEMATICA
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 73]]
CROSSREFS
Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Oct 04 2014
STATUS
approved
Decimal expansion of (611 + sqrt(73))/36.
+10
8
1, 7, 2, 0, 9, 5, 5, 5, 6, 5, 9, 5, 9, 2, 1, 5, 3, 6, 4, 3, 5, 5, 1, 9, 9, 0, 2, 3, 1, 2, 8, 4, 4, 3, 6, 2, 8, 9, 8, 4, 9, 8, 4, 5, 9, 8, 1, 3, 7, 5, 9, 2, 4, 5, 0, 6, 7, 1, 9, 6, 8, 4, 7, 5, 7, 0, 4, 9, 2, 1, 2, 4, 6, 7, 2, 0, 3, 5, 3, 6, 0, 6, 6, 1, 4, 1, 1, 3, 8, 1
OFFSET
2,2
FORMULA
Equals lim_{n->infinity} A082640(2, n)^(1/n).
Equals 288*x_2, where x_2 is the largest root of 5184*x^2 - 611*x + 18.
EXAMPLE
17.2095556595921536435519902312844...
MATHEMATICA
First[RealDigits[N[(611+Sqrt[73])/36, 90]]]
KEYWORD
nonn,cons
AUTHOR
Stefano Spezia, Feb 12 2022
STATUS
approved
Decimal expansion of log_2((611 + sqrt(73))/36)/2.
+10
8
2, 0, 5, 2, 5, 6, 8, 9, 7, 1, 6, 1, 2, 7, 3, 5, 6, 6, 5, 1, 0, 7, 8, 7, 1, 5, 4, 0, 4, 7, 8, 6, 5, 5, 8, 7, 1, 0, 5, 3, 8, 4, 8, 7, 6, 2, 3, 7, 1, 2, 2, 1, 4, 3, 8, 8, 9, 2, 9, 8, 0, 3, 2, 7, 7, 4, 1, 7, 9, 0, 8, 2, 0, 0, 4, 1, 2, 0, 7, 1, 0, 4, 6, 5, 9, 3, 2, 3, 6, 3
OFFSET
1,1
FORMULA
Equals log_2(alpha)/2, where alpha = lim_{n->oo} A082640(2, n)^(1/n).
EXAMPLE
2.052568971612735665107871540478655871...
MATHEMATICA
First[RealDigits[N[Log[2, (611+Sqrt[73])/36]/2, 90]]]
PROG
(PARI) log((611 + sqrt(73))/36)/log(4) \\ Charles R Greathouse IV, Oct 31 2023
KEYWORD
nonn,cons
AUTHOR
Stefano Spezia, Feb 12 2022
STATUS
approved
Continued fraction for sqrt(73).
+10
3
8, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1
OFFSET
0,1
EXAMPLE
8.544003745317531167871648326... = 8 + 1/(1 + 1/(1 + 1/(5 + 1/(5 + ...)))). - Harry J. Smith, Jun 08 2009
MATHEMATICA
ContinuedFraction[Sqrt[73], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2011 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 20000); x=contfrac(sqrt(73)); for (n=0, 20000, write("b010151.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 08 2009
CROSSREFS
Cf. A010525 Decimal expansion. - Harry J. Smith, Jun 08 2009
KEYWORD
nonn,cofr
STATUS
approved
Decimal expansion of sqrt(365).
+10
3
1, 9, 1, 0, 4, 9, 7, 3, 1, 7, 4, 5, 4, 2, 8, 0, 0, 1, 7, 9, 1, 6, 8, 2, 9, 5, 7, 5, 2, 4, 9, 6, 6, 9, 1, 4, 1, 5, 3, 9, 6, 4, 7, 2, 3, 3, 1, 7, 6, 7, 9, 9, 7, 3, 6, 5, 2, 5, 8, 0, 8, 2, 1, 3, 4, 8, 7, 0, 0, 0, 1, 0, 7, 4, 9, 2, 6, 5, 5, 2, 1, 2, 9, 2, 6, 0, 7, 3, 2, 6, 4, 8, 2, 8, 5, 6, 5, 5, 6, 7, 9, 8, 9, 5, 1
OFFSET
2,2
COMMENTS
Continued fraction expansion of sqrt(365) is A040345.
LINKS
EXAMPLE
sqrt(365) = 19.10497317454280017916...
CROSSREFS
Cf. A002163 (decimal expansion of sqrt(5)), A010525 (decimal expansion of sqrt(73)), A176979 (decimal expansion of (15+sqrt(365))/10), A040345.
KEYWORD
cons,nonn
AUTHOR
Klaus Brockhaus, Apr 30 2010
STATUS
approved
Numerators of continued fraction convergents to sqrt(73).
+10
2
8, 9, 17, 94, 487, 581, 1068, 17669, 18737, 36406, 200767, 1040241, 1241008, 2281249, 37740992, 40022241, 77763233, 428838406, 2221955263, 2650793669, 4872748932, 80614776581, 85487525513, 166102302094, 915999035983, 4746097482009, 5662096517992
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,2136,0,0,0,0,0,0,1).
FORMULA
G.f.: -(x^13 -8*x^12 +9*x^11 -17*x^10 +94*x^9 -487*x^8 +581*x^7 +1068*x^6 +581*x^5 +487*x^4 +94*x^3 +17*x^2 +9*x +8) / (x^14 +2136*x^7 -1). - Colin Barker, Nov 08 2013
MATHEMATICA
Numerator[Convergents[Sqrt[73], 30]] (* Vincenzo Librandi, Oct 29 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 2136, 0, 0, 0, 0, 0, 0, 1}, {8, 9, 17, 94, 487, 581, 1068, 17669, 18737, 36406, 200767, 1040241, 1241008, 2281249}, 30] (* Harvey P. Dale, Jul 12 2023 *)
CROSSREFS
KEYWORD
nonn,cofr,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 08 2013
STATUS
approved
Denominators of continued fraction convergents to sqrt(73).
+10
2
1, 1, 2, 11, 57, 68, 125, 2068, 2193, 4261, 23498, 121751, 145249, 267000, 4417249, 4684249, 9101498, 50191739, 260060193, 310251932, 570312125, 9435245932, 10005558057, 19440803989, 107209578002, 555488693999, 662698272001, 1218186966000, 20153689728001
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,2136,0,0,0,0,0,0,1).
FORMULA
G.f.: -(x^12 -x^11 +2*x^10 -11*x^9 +57*x^8 -68*x^7 +125*x^6 +68*x^5 +57*x^4 +11*x^3 +2*x^2 +x +1) / (x^14 +2136*x^7 -1). - Colin Barker, Nov 13 2013
a(n) = 2136*a(n-7) + a(n-14). - Vincenzo Librandi, Dec 11 2013
MATHEMATICA
Denominator/@Convergents[Sqrt[73], 50] (* Vladimir Joseph Stephan Orlovsky, Jul 05 2011 *)
CoefficientList[Series[-(x^12 - x^11 + 2 x^10 - 11 x^9 + 57 x^8 - 68 x^7 + 125 x^6 + 68 x^5 + 57 x^4 + 11 x^3 + 2 x^2 + x + 1)/(x^14 + 2136 x^7 - 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 11 2013 *)
PROG
(Magma) I:=[1, 1, 2, 11, 57, 68, 125, 2068, 2193, 4261, 23498, 121751, 145249, 267000]; [n le 14 select I[n] else 2136*Self(n-7)+Self(n-14): n in [1..40]]; // Vincenzo Librandi, Dec 11 2013
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
STATUS
approved

Search completed in 0.009 seconds